Software
(Service

Qrganisation

N

Job Automation

Job Scheduling

JOBSCHEDULER

Technical Description
April 2016

Software- und Organisations-Service GmbH Giesebrechtstr. 15 10629 Berlin Germany Telephone +49 30 86 47 90-0

JobScheduler 2

Contact Information

Software- und Organisations-Service GmbH
Giesebrechtstr. 15
D-10629 Berlin

Telephone +49 (30) 86 47 90-0
Telefax +49 (30) 8 61 33 35
Mail info@sos-berlin.com

Web www.sos-berlin.com

Last Updated: April 2016

Software- und Organisations-Service GmbH April 2016

JobScheduler 3

Table of Contents

1 Configuring the JobSchedulero e e it i e it e e e 6
T XML ConfigUIation . ..o e e 6
T EXAMIDIE L e 6
1.1.2 Coding the XML Configuration e e 7
1.1.3 Configuration SChema o 7
1.2 Configuration Using HOt FOIderso e e e 88
1.2.1 Configuration DireCtOryo e 89
1.2.2 Files for Process Classes, Locks, Jobs, Job Chains and PermanentOrders 89
1.2.3 Directory Mirroring with the JobScheduler 90
1.2.4 Effects of the Change and Delete Commandso i 90
1.2.5 Behaviour of Individual ObjJect TYPeso 90
1.2.6 The <show_state> Command i e 92
1.3 Central Configuration Using a Supervisor JobScheduler i 92
1.3.1 A Typical Configuration e 92
1.3.2 The Supervisor JobScheduUler e e 93
1.3.3 Registering a JobScheduler with the Supervisor JobScheduler it 93
1.3.4 Effectiveness of Local Changes to the Configuration i 93
1.3.5 Taking Over an Existing Configuration in the Central Administration 94
1.3.6 Behaviour of the JobSchedulers on Starting e 94
T factory.ini File . ..o e 94
PRSI0 1 o T 104
1.6 Settings which Allow Environment Variables with ${...}tobe Called 106
1.6, XML AU DULES . . o e 106
1.6.2 Files factory.inio e 107
18,3 FIlES SO NI ..ottt 107
1.7 Command Line Operationot e 107
1.8 JOE - JobScheduler Object EQItor oo e e 120
1.8.1 Configuration and Documentation of JobSchedulerobjects o i, 120
1O Database . .. o 136
1001 SO iNGS .o e 137
1.9.2 Application Programming Interfaceo 138
1.9.3 COMMANAS . . .o e e e e 138
1.9 4 ErTOr-TOIBIaNCE . .. oo e e e e e e 138
A0 HISOMY oo 138
1.10.1 1. Purpose of the History e 138
1.10.2 2. HIiStOry File ..o e e e 139
1.10.3 3. Task Recognition and Extra Fields e 142
1.10.4 4. Reading the History viathe TCP Interface i 142
1.10.5 5. Error Handling oo 143
1.11 Running the JobScheduler as a Service or Daemono e 143
1.12 Backup JObSchedulers e 145
1.12.1 JobScheduler Backup Cluster e 145

72 Lo L 151
2 A WAt I8 @ JOD 7 . 151
2.1.1dob ConfigUuration e 151
2.1 2 IMplemeEntation e 151
21.3The Status Of @ Jobo 153
2.1.4 Changing the Status of @ JOb 153
215 Starting @ Tasko 153
2.0 B LOCKS . ot 154
2.1.7 Directory MONItOrNgo e e e e 154
2.1.8 MONItOr SO DS - .ottt e 154

Software- und Organisations-Service GmbH April 2016

JobScheduler 4

2.2 Implementation of JobScheduler scripts as COM ClasSesoiiiiiiiiiiii it 155
2. 3 LOCKS . .ttt e e 158
2.3.1 Lock Configuration i e 159
2.3.2 Non-Exclusive LOCKING 159
2.3.3L0cks iN JOD Chains 160
2.4 External Job Processing With Agentso 160
2.4 AP CatioON .. o e e e 161
2.4.2 Requirements for External JOb Processing 161
2.4, 3 CONfIQUIAL ON . . ot 161
2,44 MONIOr SCIIP S .. oottt 162
2.45The Context Of API Callso et e eeaas 162
2.4.6 Configuration Files e e e 162

2 4.7 LOg FIlES . .o e 162

3 Order processing and File MoONitoringc.ooiriiiiiirii e e e iaa e raraaransaeanrarannanenns 163
3.10rders and JOD Chainst e e e e 163
R 2 g O T o T 5 =T 163
3.1.20rder Queue and Tasks e 164
3.1.3 Recognition of DOUbIe Ordersoii it e et e 164
3.1.4 Directory Monitoring with File Orderso.iiii e e e 164
B D POy ..o 164
31,6 ENAiNg TasKs . ..o e e 164
3.1.7 Accelerated Order ProCesSiNgo.u ittt e e e e 164
308 DaAlabaSE . . .o e e 165
3.2 Directory Monitoring with File Orderst e e 165
g N TR @ o =Y T T U o =T 165
3.2.2 File Monitoring With @ File Order e et 166
3.2.3 File Order Sink: Removes or Moves a File e 166
.24 BIaCKIiSto e e 167
3.2 8 DIreCtOrY ErTOrS . .o e e e 167
3.2.6 WhenisaDirectory Read?ii it e e e e e e 167
3.2.7 Order Controlled Non-API Jobs (<script language="shell">) i i 168
3.3 Directory MONItOrINgot e e e e e 168
3.3.1 Definition of @ Directory Change:ot e e 168
3.3.2 The Regular EXpressions Filter e e 168
3.3.3 The Directory in Which a Change has Taken Place ... i 168
3.3.4 The Files in the DireCtOryo e et e e 169
3.3.5 Errors when Directory MONIOIINGo e 169

B 3 0 EXAMPIE ..o e 169
3.4 DisStribUIEd Ordersttt e e e e e 170
3.4.1 Distributed Order ProCeSSINGui ittt e ettt e e 170

4 Protocols and Forwarding of E-mailsiiiiiiiiii e et e e ana e raranrarannnnns 174
S o T - 174
A LOg File Size .o 174
41,2 MESSAGE COUBS ..\ttt ittt et ettt et e e e 174
AAB U DISC DIIVE . . .ottt e e e e e e e e e e e e e 175
4.1.4 Database Storage of ProtocCols e 175
4.1.5 Program INterfaceot e 175
4.1.6 E-mail FOrWwardingo e 175
4.1.7 ProtoCol Display e 175
4.2 Sending E-mailso e e 175
4.2, E-mail Settings . ..ot e 175
4.2.2 E-mails Sent after Task Completion i e 176
4.2.3 Settings Priortieso 176
4.2.4 E-mails Sent when the JobScheduler Terminates because ofan Error 177
4.2.5 Installation with JavaMail 177
4.3 L0G CalBgories . ..ottt e e e e 177

Software- und Organisations-Service GmbH April 2016

JobScheduler 5

5 Communication and Operationc..iiiiiiiiiii it i ittt a i et ettt i i i e, 180
5.1 HTTP Server and WeED SerVICES iui ittt e e e et e et 180
BT WD SBIVICES . ..ottt e e e 180
5.1.2 Operation With @ BrOWSEr e e e e e 180

B 8 S UMY . oottt e e 180
5.1.4 ShoW ProtOCOIS iN @ BrOWSEEttt ettt e ettt e e e et e e et 180
B5.1.5 Job DESCIiPliONS ... o e e 181
5.1.6 Built-In Graphical User Interface e 181

5.2 XML COMMaNAS . .ttt ettt ettt et et et e et e e e e e e e e e e e e 185
B.2.0 XML AN WS . . ittt ettt et et et e e e e e e e e e e e 214

5.3 Terminating the JObScheduler e e e e 233
LT B I 7] = Tox 1) (o] o] o 1T P 233
5.3.2 Correct Stopping with a Time Limit o e et e 233
5.3, T rmiNatioNo e 233
APPENAIX Az MESSAGES ...ttt t it i it s e taas e e st e s st sanssansanssansanataansanssanssansnnssnnsnnns 234
A.1 Messages for the Scheduler Package e et 234
A.2 Messages for the Separate processes Packageo.vi ittt e 256
A.3 Messages for the Charset Packageooiuiiiii i e et 257
Y o] o =T g o [Q= 04 1 - T4 Ve T= T8 IR Yo 258
Appendix C: SQL Instructions Used by the JobScheduler ... 341
C.1 SQL Instructions Used by the JobScheduler for DB2®ot 341
C.2 SQL Instructions Used by the JobScheduler for Microsoft SQL Server ..., 343
C.3 SQL Instructions Used by the JobScheduler for MySQL®o 345
C.4 SQL Instructions Used by the JobScheduler for Oracle®o e 347
C.5 SQL Instructions Used by the JobScheduler for PostgreSQLot 349
C.6 SQL Instructions Used by the JobScheduler for Sybase ASE 351
Appendix D: Scripts in JavaS Criptcoiiiii i i i i it i i ri i e i 354
D.1 Java-Exceptions in SPIdermOnKEYouiiiit i e e 354

g T =G 356

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 6

1 Configuring the JobScheduler

1.1 XML Configuration

The file containing the XML configuration should be specified when starting the JobScheduler.

1.1.1 Example

The following shows a simple configuration file with a shell job:

<?xml version="1.0">

<spooler>
<config>
<jobs>
<job name="hello world">
<script language="shell"><![CDATA[
echo hello world
11></script>
<run time repeat="10"/>
</job>
</jobs>
</config>
</spooler>

This example shows the configuration of the he11o world job, which the JobScheduler repeats every 10 seconds.

When this configuration is saved in the hello world. xml file, the JobScheduler could be started as follows (for
Windows):

..scheduler installation path.\bin\scheduler. exe -config=hello world. xml
Note that if the JobScheduler has been started at the command line, it can be stopped using the "Ctrl-C" keys.

Alternatively you could create individual configuration files per job, job chain etc. that would contain exclusively the
elements required by these objects:

<?xml version="1.0">
<job>
<script language="shell"><![CDATA[
echo hello world
11></script>

<run time repeat="10"/>
</job>

When this configuration is saved in a file scheduler installation path/config/live/hello world. job. xml,
then it would be automatically used by a running JobScheduler.

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 7

1.1.2 Coding the XML Configuration

<?xml encoding="UTF-8"2> and
<?xml encoding="IS0-8859-1"2> are allowed.

Note that the JobScheduler only processes 8 bit Characters (ISO-8859-1).

1.1.3 Configuration Schema

The JobScheduler verifies the XML configuration according to the JobScheduler XML Schema (Is only shown
correctly in IE).

Clicking on an XML element in the schema list below leads to a description of the element:

<spooler

<config central configuration directory = ".."
configuration add event ="."
configuration delete event
configuration directory ="."
configuration update event = "."
include path = "."
ip address ="
log dir ="."
mail xslt stylesheet = "."
param =".
port = "4444"
priority max = "1000"
spooler id ="n
supervisor = ".
tcp port = "4444"
udp port = "4444" >
time zone ="...">

won

<base file="."/>

<params>
<param name="." value="."/>
</params>

<security>
<allowed host name="." level="."/>

</security>

<plugins>
<plugin java class=".."/>

</plugins>
<cluster heart beat own timeout = "."

heart beat timeout =m"."
heart beat warn timeout

I
<
v

<process classes ignore = "no">

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler

<process class max processes = "."

name ="
spooler id = ".">
<remote schedulers ignore = "no">

<remote scheduler
remote scheduler ="
http heartbeat period = ".."
http heartbeat timeout = ".">
</remote scheduler>
</remote schedulers>
</process class>

</process classes>

<schedules>
<schedule name = "."
substitute
valid from
valid to ="."/>

</schedules>

<locks>
<lock name= "." ../>

</locks>

<script com class = "."
filename = "."
java class =
language ="." >
<include file="."/>
<! [CDATA[
program-code..
11>
</script>

<http server>
<http. authentication scheme="basic">
<http. users>
<http. user name=".." password md5="

</http. users>
</http. authentication>

<http directory path="." url path="."/>
<web service job chain=".." url path="." .>
<params>
<param name=".." value="."/>
</params>

</web_service>
</http server>

<holidays>

/>

Software- und Organisations-Service GmbH

April 2016

Configuring the JobScheduler

<holiday date="."/>

<include file="."/>

<weekdays date="."/>
</holidays>

<jobs>
<job

force idle timeout =

idle timeout =
ignore signals =
java _options
min_tasks =
name =
order =
priority =
process class =
spooler id =
stop _on error =
tasks =
temporary =
timeout =
title =
visible =

<description>
<lock. use lock="

<environment>
<variable na

</environment>

<params>
<param name=

</params>

<script com clas
filename

java cla
language
<include fil

" yesl no"

. </description>

WL

me="." value="."/>

value="."/>

s —_—n n

SS
=" o>
e="."/>

<! [CDATA[program-code.. 11>

</script>

<monitor name
orderin

<script language=".."

=n "
g = ".">
.>.<script/>

</monitor>

<start when dire

ctory changed directory=".."

regex="..

/>

Software- und Organisations-Service GmbH

April 2016

Configuring the JobScheduler

10

<delay after error delay="." error count="." />

<delay order after setback delay=".."

<run time let run="no">

<period begin = "00: 00"
end = "24: 00"
let run =
repeat =
single start =

when holiday "L />

<date date="yyyy-mm-dd"/>

<weekdays>
<day day="..">
<period ../>

</day>
</weekdays>

<monthdays>
<day day="..">
<period ../>

</day>
<weekday weekday=".." which=".">
<period ../>

</weekday>
</monthdays>

<ultimos>
<day day="..">
<period ../>

</day>
</ultimos>

<month month=".">
<period begin = "00: 00"
end = "24: 00"
let run ="
repeat =n"."
single start = "." />
<weekdays>
<day day="..">
<period ../>

</day>

is maximum="yes| no
setback count="." />

Software- und Organisations-Service GmbH

April 2016

Configuring the JobScheduler

1"

</weekdays>
<monthdays>
<day day="..">
<period ../>

</day>

<weekday weekday=".." which="..

<period ../>
</weekday>
</monthdays>
<ultimos>
<day day="..">
<period ../>
</day>
</ultimos>
</month>
<holidays>
<holiday date="yyyy-mm-dd"/>
<include file="."/>

</holidays>

<at at="yyyy-mm-dd HH: MM: SS"/>
</run_time>

<commands on exit code=".."
<start job job="." .>
<params>
<param name=".." value="."/>
<copy params from="task"/>
<copy params from="order"/>

</params>
</start_job>

<add order job chain="." .>
<params>
<param name=".." value="."/>

<copy params from="task"/>
<copy params from="order"/>

</params>
</add_order>

</commands>
</job>

</jobs>

Software- und Organisations-Service GmbH

April 2016

Configuring the JobScheduler

12

<job chains>
<job chain

distributed = "no"
name =
orders recoverable= "yes"
title =n"."
visible = "yes

>

<file order source
delay after error = "."
directory ="
max =
next state ="
regex =
repeat =n"."

/>

<job chain node
delay = """
error state = "."
job = """
next state = "."

on_error = "suspend| resume"

state ="."

<on return codes
>

<on return code

return code = ".

>
<add order
xmlns =

"https: //jobscheduler-plugins. sos-berlin. com/NodeOrderPlugin"

job chain =".
id =".

<params>

<param name=".." value="."/>

</params>
</add_order>

<to state state="."
</on_return code>

</on_return codes>
</job_chain node>
<file order sink

move to =

remove = "yes"
state ="."

/>

/>

Software- und Organisations-Service GmbH

April 2016

Configuring the JobScheduler

13

</job _chain>

<job chain name="..">
<job chain node. job chain

/>

job chain ="
error state = "."
next state = "."

<job chain node. end

/>

</job _chain>

</job_chains>

<commands>

</commands>

</config>

</spooler>

XML Elements

XML Element <add order>

T ST T ST T TS TS TR S EEEEE]
1<add order

>

job chain
id

replace
priority
title

state

web service
at

end state

params
run_time
xml payload

</add order>

Adds a new order.

= "name"
"l

= "yes|no”

“number”

"text"

= "text”

“name”

= "timestamp" Order Starting Time

= "text"

Parameters
The Job Run Time

State before which the order should be successfully

completed and should leave the job chain

When the <params> element is specified, then the JobScheduler creates a variable set_and makes it available in
Order. payload() _.

Software- und Organisations-Service GmbH

April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler

14

Example:

<add order job chain="job chain" id="1234" title="My First Order" state="100
at="now+3: 00" >

<params>
<param name="a parameter" value="a value"/>

</params>
</add order>

Parent Elements

<commands> - XML Commands
Attributes

job_chain="name"

The name of the job chain in which the order is being processed.

id="jd"

The alphanumerical identification of the order. (Note that this parameter may not be set to id - which is an XML

reserved word.)

replace="yes|no" (Initial value:yes)

replace="no":Job chain. add order() Will be called.
replace="yes":Job chain. add or replace order() Will be called.

priority="number"

If two orders should be started at the same time then orders with a higher priority are processed first.

title="fext"

The title of the order.

state="fext"

web_service="name"

When an order has been completed and the end of the job chain reached, it is then transformed with a style sheet

and forwarded to a Web Service.
See <web service> (page 83).

at ="timestamp" (Initial value:now) Order Starting Time

Software- und Organisations-Service GmbH

April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler 15

"now", "yyyy-mm-dd HH: MM[: SS]", "now + HH: MM[: SS]" and "now + SECONDS" are possible.
See also order. at_.

end_ state="text" State before which the order should be successfully completed and should leave the job chain

See Order. end state._.

XML Element <add order>

T ST ST ST T TS TS TS SRS EEE]
1<add order

xmlns = "namespace” M u s t b e s et t o
https://jobscheduler-plugins.sos-berlin.com/NodeO
rderPlugin

job chain = "name”

>
params-node order plugi
n

</add order>

1
1
1
1
1
1
1
1
1
: l d = "id"
1
1
1
1
1
1
1
1

Adds a new order for a job chain. This order will be started immediately.

This element is derived from a different namespace
https://www.sos-berlin.com/repository/scheduler/1.9/scheduler.xsd that includes support for the NodeOrderPlugin.

The <add_order> element is used with the <on_return code> element to add an order in the event of a job task
ending with a return code matching one of those specified in the <on return code> element's return code
attribute.

Note that the execution of an <add order> element is not logged in the log file of the current current (i.e.
originating) order.
Requirements

. The NodeOrderPlugin has been delivered as part of all JobScheduler releases since 1.9.0.
. The NodeOrderPlugin must also be activated in the scheduler. xml file as follows:

<plugins>
<plugin
java class="com sos. scheduler. engine. plugins. nodeorder. NodeOrderPlugin"/>

</plugins>

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler

16

Example:

<on return codes>
<on return code return code="0">
<add order id="myOrderId"
xmlns="https: //jobscheduler-plugins. sos-berlin. com/NodeOrderPlugin" job chain="Chain B"
>
<params >
<param name="parameterName" value="parameterValue"/>
</params>
</add order>
</on return code>
</on _return codes>

Parent Elements

<on_return_code> - On Return Code

Attributes

xml ns ="namespace"” Must be set to https://jobscheduler-plugins.sos-berlin.com/NodeOrderPlugin

The namespace of the plugin used. This attribute must be specified.

job_chain="name"

The name of the job chain in which the order is being processed.

id="jd"

The identification for orders generated by the <add_order> element.

(Note that this parameter should not be set to id, which is a reserved word in XML.)

Example:

. <add order id="myOrderId" job chain=""/>

If the id attribute is not specified then orders generated by the <add order> element inherit the id of the originating

order.

Orders generated by the <add_order> element that are to be executed on job chains other than the originating job
chain do not have to have an id attribute.

Orders generated by the <add _order> element for the originating job chain (i.e. creating a loop) have to have an
id attribute.

Orders id attributes can be generated using variables. For example:

. <add order id="${ORDER _ID}.1" job chain=""/>

XML Element <allowed host>

Fmmmmemmmemmam—ecme e Eaemeommemmmmmmmmmmmmemmmmmmmmmmmmemmmmmmmmmmmmemmmmm————————————
1<allowed host

1 host = "hOSt"

Software- und Organisations-Service GmbH

April 2016

Configuring the JobScheduler 17

' level = "level”
1> </allowed host>

<allowed host> - the name or IP address of a computer which is allowed to communicate with the JobScheduler.

The IP number may be a network address (class A, B or C), in which case all computers belonging to the network
are allowed by default. A network address can be recognized in that the last part of the IP number is 0. Note that
the JobScheduler handles the permissions for exact IP numbers with higher priority than network addresses.

Example:

<security>
<allowed host host="127.0.0.1" level="all"/>
<allowed host host="admin. company.com" level="all"/>
<allowed host host="192.168.1.0" level="info"/>

</security>

The IP addresses 127.0.0.1 and admin.company.com and the addresses in the Class-C-Network 192.168.1 are
allowed to connect with the JobScheduler. The last entry, however, restricts the commands which may be carried out
to those which deliver information.

Example:

<security>
<allowed host host="0.0.0.0" level="all"/>
</security>

Any computer has full access to the JobScheduler.

Behavior with_<base>

Supplements the <allowed host> element in the corresponding node of the basic XML configuration with the
attribute host= . Attributes specified here have precedence over those entered in the basic XML configuration.

Parent Elements
<security> - Access Protection for TCP, HTTP and UDP

Attributes

host ="host"

host is the name or the IP address of the computer for which the access protection should be set. It can also be the
IP address of a network.

An entry with the host="0. 0. 0. 0" will be used for all hosts which are not specified here.

level ="level"

level="none"

The computer has no access.

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 18

level="signal"
The computer may carry out signalizing commands.
level="info"

The computer may carry out commands which convey information, but which do not change the JobScheduler's
state.

level="no_add"

The computer has full access, with the exception of <add jobs>_, <job>_and <add order>_.

level="all"

The computer has full access.

XML Element <at>

o)
]

[}
3
3
3
3
Q
Q.
>
S
3
3
—
[
2,

Parent Elements
<run_time> - The Job Run Time

Attributes

at ="yyyy-mm-dd hh:mm[:ss]"

Defines a starting point with date and time.

XML Element <base>

' file = "filename”

The element <base> references to a basic configuration. A basic configuration lies in a separate file and has the
same structure as a XML-Konfiguration (page 6) (that is to say that it starts with <spooler>_). Settings can be
made in a basic configuration, and then either extended or overwritten by those of a higher level configuration. (A
higher level configuration is that containing the <base> element which references a lower level configuration.)

The JobScheduler processes the basic configuration first.
For example, jobs can be defined in a basic configuration, and the higher level configuration can specify the job run
times (<run time>).

A basic configuration can call up another basic configuration. However, note that the JobScheduler does not test
whether a basic configuration refers to itself.

<base> can be called repeatedly. The JobScheduler works through base configurations in the order in which they
are called. A second basic configuration can either supplement or overwrite a first.

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 19

Parent Elements

<config> - Configuration
Attributes

file="filename"

filename is the name of the file in which the basic configuration is held.

When the file name is not given absolutely, then the JobScheduler assumes that the file is to be found in the
directory in which the <base> element is to be found.

The XML elements are executed in the basic configuration with the rights <allowed host level="all">_.

Environment variables (e.g. sHOME) are replaced by this attribute (see Settings which Allow Environment Variables
to be Called (page 106)).

XML Element<cluster>

P e e e e e e e e e e e i e T T R R e e e e e 1

1<cluster :
' heart beat timeout = "seconds” :
! heart beat own_ timeout = "seconds” :
! heart beat warn timeout = "seconds” :
1 1
1 1

> </cluster>

This element can only be used in conjunction with the —exclusive or -distributed-orders_options.

Behavior with_<base>

Supplements the <cluster> element in the corresponding node of the basic XML configuration . Attributes
specified here have precedence over those entered in the basic XML configuration.

Parent Elements
<config> - Configuration

Attributes

heart beat timeout="seconds” (Initial value:60)

The time limit allowed for the heartbeat of another active JobScheduler in a cluster to be delayed before the
JobScheduler is declared dead.

When a JobScheduler is inactive and operated with the -exclusive_option set, then it may then become active.

Messages
[warn] SCHEDULER-836 Deactivating that dead Scheduler
[warn] SCHEDULER-996 No heart beat for seconds (time) - JobScheduler seems to be dead

heart beat own timeout="seconds” (Initial value:55)

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler

20

This setting is used for self-regulation of a JobScheduler. When a JobScheduler notices that its own heartbeat has
been delayed longer than the time specified in this parameter, then it immediately stops and restarts itself. This
means that a JobScheduler preempts being deactivated by another Scheduler and avoids the short-term possibility
of parallel operation because of a delayed heartbeat.

Messages

[ERROR] SCHEDULER-386

heart beat warn timeout="seconds” (Initial value:10)

The time allowed for a delay in the heartbeat of a JobScheduler before a warning is given out.

Messages
[warn] SCHEDULER-994
[warn] SCHEDULER-995

XML Element <commands>

i <commands
on_exit code
>
add_jobs
add_order
modify job

modify order
modify spooler

ories. reset
ories. set

ories. show
show_history
show job
show jobs

show state
start job
terminate

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 </commands>

T

scheduler log.log categ
scheduler log.log categ

scheduler log.log categ

show_job chains

No heart beat for seconds (time), expecting heart beat within seconds

No heart beat for seconds (time), ignored for seconds because of recent
database reconnect

= "exitcodes"

Add an order

start a Task

Last heart beat was time, seconds ago. Something is delaying JobScheduler
execution, the JobScheduler is aborted immediately

This element allows a series of commands to be grouped together. The starting point for these commands then
depends upon the relevant parent elements.

Parent Elements
<config> - Configuration
<job> - Definition of jobs

Attributes

Software- und Organisations-Service GmbH

April 2016

Configuring the JobScheduler 21

on_exit code="exitcodes"

This attribute is mandatory within <job> - it cannot be used anywhere else.

Defines the exit codes which are to cause the commands listed here to be carried out. The following values can be
specified here:

a list of exit codes, separated by blanks.

on _exit code="success" isthe same ason exit code="0".

on exit code="error" is valid for all exit codes with the exception of 0 and the exit codes already specified
in other <commands exit code=".">_.

Only for Unix systems: A task ending with a signal (either caused by the operating system command ki11 or
a program error) has an exit code with the negative signal value. For example, for xi11 this would be -15.
The following signal names may be used: SIGHUP, SIGINT, SIGQUIT, SIGILL, SIGTRAP, SIGABRT, SIGIOT,
SIGBUS, SIGFPE, SIGKILL, SIGUSRL, SIGSEGV, SIGUSR2, SIGPIPE, SIGALRM, SIGTERM, SIGSTKFLT, SIGCHLD,
SIGCONT, SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU, STGURG, SIGXCPU, STGXFSZ, STGVTALRM, STGPROF, STGWI NCH,
SIGPOLL, SIGIO, SIGPWR and s1Gsys. Signal names which are not recognised by the operating system are
ignored and a warning is given out.

<job ignore signals=".."> | .
See also <job i i ls="." age 42

Example:

on_exit code="0"

on _exit code="1 2 3 99"
on_exit code="error"

on _exit code="SIGTERM SIGKILL"

Messages

[ERROR] ~ SCHEDULER-324 Invalid value for attribute exit_code=""in <commands>

[ERROR] SCHEDULER-325 Attribute exit_code is not applicable here

[ERROR] ~ SCHEDULER-326 <commands on_exit_code="">: <commands> for exit code is already defined
[ERROR] ~ SCHEDULER-327 Last error occurred when executing command: xml_command

[warn] SCHEDULER-337 Signal is unknown on this operating system and is ignored

[info) SCHEDULER-328 Executing <commands on_exit_code="">:

XML Element <config>

r
1

<config

central configuration direc = "path"” :
tory '
configuration directory = "path” Path to the Configuration Directory :
configuration add event = "job_path" Job for Creating a New Configuration |

File |
configuration modify event = "job path" Job for Modifying a Configuration File '
configuration delete_event = '"job path" Job for Deleting a Configuration File '
supervisor = "host:port" :
spooler id = "spooler_id" :
port = "number” Port Number for TCP and UDP '
tcp port = "number” Port for HTTP and TCP commands for |

the JobScheduler :

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 22

: udp port = "number” Port for UDP commands for the :
: JobScheduler :
: param = "text" For free use :
. log dir = "directory” Protocol directory :
i, time zone = "text" JobScheduler time zone :
: include path = "directory” Directory path for <include> |
: mail xslt stylesheet = "path” The path to the XSLT style sheet used .
: for the preparation of e-mails :
: ip address ="ip_number” The interface IP address for TCP and .
E UDP E
1> 1
: base Basic Configuration |
. params Parameters :
: security Access Protection for TCP, HTTP and UDP |
: cluster Settings for cluster operation |
: process classes Process Classes :
. script Program code |
: scheduler script :
: http server HTTP server :
: holidays Holidays |
: Jjobs Jobs :
: job_chains Job Chains |
: commands XML Commands :
1</config> :
L

<config> contains the JobScheduler configuration information - in particular, information related to the
configuration of jobs. The <config> element can be repeated when the the spooler id attribute changes. Should
the -id= parameter not be specified on starting the JobScheduler, then the first specified <config> will be used.
Otherwise the spooler id attribute with the same value will be used.

Behavior with_<base>

Supplements the <config> element in the corresponding node of the basic XML configuration with the attribute
spooler id=.Attributes specified here have precedence over those entered in the basic XML configuration.

Parent Elements

<spooler> - Root Element of the XML Document
Attributes

central configuration directory="path”(Initial value:remote)

The default directory is remote in the configuration file directory - see -config_.

This directory is for operation as a supervisory JobScheduler. Other Workload JobSchedulers register with the
supervisory JobScheduler using <config main scheduler="..">_. This directory can contain a sub-directory, also
containing configuration files, which the supervisory JobScheduler replicates when in operation.

Schedulers in a —exclusive_Or -distributed-orders_cluster obtain their configuration from a directory with the
name of the JobScheduler ID (-id).

JobSchedulers that do not belong to a cluster obtain their configuration from a directory whose name is made up
from the computer's name and TCP port number (<config tcp port="..">): host name#tcpport .

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 23

In both cases, additional configuration files will be forwarded by the supervisory JobScheduler from its a11
directory . These files are of lesser priority.

It is possible that no directory is specified for a Workload JobScheduler. In this case, however, the configuration
from the al1 directory, if available, will still be transmitted.

Messages

[warn] SCHEDULER-454 Remote configuration directories " and " refer to the same IP number
[warn] SCHEDULER-457 Remote JobScheduler " has not been registered

[info] SCHEDULER-455 No configuration directory for "

configuration directory="path” (Initial value:live) Path to the Configuration Directory
The default setting is the 1ive directory, which itself is to be found in the same directory as the configuration file -
see -config. .

Use of this directory takes the definitions of jobs, job chains and other objects away from the JobScheduler - see
(page 88).

configuration add event="job_path"” Job for Creating a New Configuration File

The job in question is started when the JobScheduler loads a new file from its configuration directory.

The job is started when allowed by its <run time>_parameter. It should be defined in the JobScheduler
configuration file, so that it is recognised when the JobScheduler reads the configuration directory.

The task which is started by this job has three parameters (which can be reached using Task. params_):

The following task parameters are available as environment variables SCHEDULER LIVE EVENT,
SCHEDULER LIVE_FILEPATH and SCHEDULER LIVE FILEBASE.

configuration modify event="job_path"” Job for Modifying a Configuration File

The job in question is started when the JobScheduler loads a modified file from its configuration directory.

The job is started when allowed by its <run time>_parameter. It should be defined in the JobScheduler
configuration file, so that it is recognised when the JobScheduler reads the configuration directory.

Parameters and environment variables are set as for <config configuration add event="..">_.

configuration delete event="job_path"” Job for Deleting a Configuration File
The job in question is started when a file which has been loaded by the JobScheduler is removed from its
configuration directory.

The job is started when allowed by its <run time>_parameter. It should be defined in the JobScheduler
configuration file, so that it is recognised when the JobScheduler reads the configuration directory.

Parameters and environment variables are set as for <config configuration add event=".">_.

supervisor="host:port"

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler 24

The supervisory JobScheduler, at which the current JobScheduler should log on and off. This takes place
asynchronously and errors do not affect operation.

No more than 4 other (Workload) Schedulers should log on to a supervisory JobScheduler running on Windows.

The supervisor can set the configuration for the Workload (secondary) JobSchedulers, see. <config
central configuration directory=".."> (page 21). The JobScheduler retains this new configuration in its
cache directory.

spooler id="spooler_id"

This element is only effective when its attribute is identical to the -id= parameter which was set as the
JobScheduler was started, or when the -id= parameter was not set as the JobScheduler was started.
port="number" (Initial value:0) Port Number for TCP and UDP

Combines the tcp port and udp port settings.

See also <config tcp port=".."> (page 21). and <config udp port=".."> (page 21).

Example:

<config port="4444">

The -port_option has precedence over this parameter.
tep_port="number" (Initial value:0) Port for HTTP and TCP commands for the JobScheduler

The JobScheduler can accept commands via a TCP port whilst it is running. The number of this port is set here -
depending on the operating system - with a number between 2048 and 65535. The default value is 4444.

The JobScheduler operates a HTTP/HTML server on the same port, enabling it to be reached using a web browser
- e.g. via http://localhost:4444.

The JobScheduler does not respond to the tcp port=0 default setting either with TCP or HTTP protocols. This
setting can therefore be used to block a JobScheduler from being accessed - for example via TCP.

See also <config port=".."> (page 21).

Example:

<config tcp port="4444">

The -tcp-port_option has precedence over this parameter.
udp_port="number" (Initial value:0) Port for UDP commands for the JobScheduler

The JobScheduler can also accept UDP commands addressed to the port specified in this setting. Note that a UDP
command must fit in a message and that the JobScheduler does not answer UDP commands.

The default value of udp port=0 does not allow the JobScheduler to open a UDP port.

See also <config port=".."> (page 21).

Example:

<config udp port="4444">

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 25

|

The -udp-port_option has precedence over this parameter.

param="text" For free use

Sets the value of spooler.param (Object spooler, property param). For free use in scripts.

log_dir="directory" Protocol directory

The directory in which the JobScheduler writes protocols.
log dir="+*stderr" allows the JobScheduler to write the main protocol to the standard error output (stderr).
time zone="text" JobScheduler time zone

Specifies the time zone in which a job or order is to start. Time zones are to be specified as defined in the tz
database. A List of time zones is available in the Joda API, which is used in JobScheduler for the time functions.

The JobScheduler uses its local time if a time zone is not specified.

Example:

<config time zone="Europe/Berlin">

The -time-zone_option has precedence over this parameter.
include path="directory" Directory path for <include>
The directory of the files which are to be included by the <include>_element.

Environment variables (e.g. s50ME) are replaced by this attribute (see Settings which Allow Environment Variables
to be Called (page 106)).

The -include-path_option has precedence over this parameter.

The_factory. ini _(section[spooler], entry include path= ..) setting is overwritten by this parameter.

mail xslt stylesheet="path” The path to the XSLT style sheet used for the preparation of e-mails

The path to the XSLT style sheet. XSLT style sheets are used by the JobScheduler for the preparation of e-mails.
At the time of writing (April 2006) this subject is not documented.

ip address="ip_number” (Initial value:0.0.0.0) The interface IP address for TCP and UDP

The IP address to which the TCP and UDP ports are bound. The JobScheduler can then only be reached by way of
this address.

A host name can also be specified.
The default setting is 0.0.0.0, which stands for all IP addresses.

When another IP address as 127.0.0.1 or localhost is given, then the JobScheduler cannot be reached by way of
localhost.

The -ip-address_option has precedence over this parameter.

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 26

XML Element <content>

T TS EmEEmEmEmEmm=- L}
i<content > </content> 1

Parent Elements
<service_request> - Web-Dienst-Anforderung

XML Element <copy params>

L]
y<copy params
' from =

1
1> </copy params>

R
V]
=
Y]
3
0]
—
0]
=
]
o
c
=
Q
(]
n

The element hands over the parameters from a task or order. This can be used in <start job>_and <add order>
according to the following hierarchy:

<job>

<commands on exit value=".">

<start Jjob>
or
<add order>

<params>

<copy params from="order">

Should the same parameter name occur twice then the parameter value will be set according to the order in which
the parameters with <copy params> and <param>_are specified. When the same parameter name occurs more
than once, the last value will be used (any subsequent parameter overrides the value of a predecessor having the
same name).

Parent Elements

<params> - Parameters
Attributes
from=""Parameter Sources

from="task"

Task parameters (Task. params_) will be handed over.

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler 27

from="order"

The parameters of the last order executed (order. params_) will be handed over. Note that the order
parameters are available after a task has been carried out when:

. the job has been implemented with <process>_ Or <script language="shell">;
. the Task. end() _method has been called or
. an error has occurred during the execution.

An error ([SCHEDULER-329) occurs when the job is not order driven (<job order="no">).

Messages

[ERROR] ~ SCHEDULER-329 <copy_params from=""/>: requested parameters are not available

XML Element <copy params>

e]
y<copy params
' from =

1
1> </copy params>

Ry
V]
=
Y]
3
0]
—
0]
=
]
(o]
c
=
Q
(]
n

The element hands over the parameters from a task or order. This can be used in <start job>_and <add order>
according to the following hierarchy:

<job>

<commands on exit value=".">

<start job>
or
<add order>

<params>

<copy params from="order">

Should the same parameter name occur twice then the parameter value will be set according to the order in which
the parameters with <copy params> and <param>_are specified. When the same parameter name occurs more
than once, the last value will be used (any subsequent parameter overrides the value of a predecessor having the
same name).

Parent Elements

<params> - Parameters
Attributes

from=""Parameter Sources

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler

28

from="task"
Task parameters (Task. params_) will be handed over.

from="order"

The parameters of the last order executed (0rder. params_) will be handed over. Note that the order

parameters are available after a task has been carried out when:

. the job has been implemented with <process> Or <script language="shell">_;
. the Task. end() _method has been called or
. an error has occurred during the execution.

An error ((SCHEDULER-329) occurs when the job is not order driven (<job order="no">).

Messages

[ERROR] SCHEDULER-329 <copy_params from=""/>: requested parameters are not available

XML Element <copy params>

I I i e e e e e e L e

1 <copy params
! from =" Parameter Sources

1> </copy params>

The element hands over the parameters from a task or order. This can be used in <start job> and <add order>

according to the following hierarchy:

<job>

<commands on exit value=".">

<start job>
or
<add order>

<params>

<copy params from="order">

Should the same parameter name occur twice then the parameter value will be set according to the order in which
the parameters with <copy params> and <param>_are specified. When the same parameter name occurs more
than once, the last value will be used (any subsequent parameter overrides the value of a predecessor having the

same name).

Parent Elements

Software- und Organisations-Service GmbH

April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler

29

<params> - Parameters
Attributes

from=""Parameter Sources

from="task"
Task parameters (Task. params_) will be handed over.

from="order"

The parameters of the last order executed (order. params_) will be handed over. Note that the order

parameters are available after a task has been carried out when:

. the job has been implemented with <process> Or <script language="shell">_;
. the Task. end() method has been called or
. an error has occurred during the execution.

An error ((SCHEDULER-329) occurs when the job is not order driven (<job order="no">).
Messages

[ERROR] SCHEDULER-329 <copy_params from=""/>: requested parameters are not available

XML Element <copy params>

i T e e e e e e T I T T

1 <copy params
! from =" Parameter Sources

1
1> </copy params>

The element hands over the parameters from a task or order. This can be used in <start job> and <add order>

according to the following hierarchy:

<job>

<commands on exit value=".">

<start job>
or
<add order>

<params>

<copy params from="order">

Software- und Organisations-Service GmbH

April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler 30

Should the same parameter name occur twice then the parameter value will be set according to the order in which
the parameters with <copy params> and <param>_are specified. When the same parameter name occurs more
than once, the last value will be used (any subsequent parameter overrides the value of a predecessor having the
same name).

Parent Elements

<params> - Parameters
Attributes

from=""Parameter Sources

from="task"
Task parameters (Task. params_) will be handed over.

from="order"

The parameters of the last order executed (0rder. params_) will be handed over. Note that the order
parameters are available after a task has been carried out when:

. the job has been implemented with <process> Or <script language="shell">_;
. the Task. end() method has been called or
. an error has occurred during the execution.

An error ((SCHEDULER-329) occurs when the job is not order driven (<job order="no">).

Messages

[ERROR] SCHEDULER-329 <copy_params from=""/>: requested parameters are not available

XML Element <date>

1 <date :
' date = "yyyy-mm-dd" :
> :
: period Operating period !
'</date> :

defines the operating times for a particular day.

See also <at>_(page 18).

Example:

<date date="2004-08-22">
<period begin="10:00" end="12:00"/>
<period begin="16:00" end="22:00"/>
</date>

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler

31

Example:

<date date="2004-09-02" begin="14:00" end="18:00"/>

Behavior with_<base>

Replaces the <date> element in the corresponding node of the basic XML configuration with the attribute date= .

Parent Elements

<run_time> - The Job Run Time
Attributes

date="yyyy-mm-dd"

The Date.

XML Element <day>

i T T R I e e

1<day

, day = "number"
>

. period Operating period
1 </day>

Defines the periods for a particular day.

Behavior with_<base>

Replaces the <day> element in the corresponding node of the basic XML configuration with the attribute day= .

Parent Elements
<weekdays> - Operating Periods for Weekdays

<monthdays> - Operating periods on particular days of the month

<ultimos> - Ultimos - Operating Periods for Particular Days of the Month - Counted from the End of the Month

Attributes

day="number"

defines the day number, which is dependant on the context of the parent element. In the case of days of the week,

the English names can be entered here. Note that the names must begin with a small letter.

Mehrere Tage kdnnen durch Leerzeichen getrennt angegeben werden.

Software- und Organisations-Service GmbH

April 2016

Configuring the JobScheduler

32

XML Element <delay after error>

<delay after error
error count = "integer”
delay =
"seconds|HH:MM|HH:MM_:S S|stop"

> </delay after error>

See Job. delay after error..

The job is immediately restarted after the first error.
The job is restarted after a delay of 10 seconds after the 2nd, 3rd & 4th consecutive errors,

after between 5 and 9 errors the job is delayed each time by a minute,
after between 10 and 19 errors the job is delayed 24 hours,

after 20 consecutive errors the JobScheduler stops the job immediately.

Example:

<job .>
<script .>..</script>
<delay after error error count= "2" delay="10" /> <!'-- 10 Seconds -->
<delay after error error count= "5" delay="00:01" /> <! -- One Minute -->
<delay after error error count="10" delay="24:00" /> <!-- A Day -->
<delay after error error count="20" delay="STOP" />

</job>

Parent Elements
<job> - Definition of jobs

Attributes

error count="integer"

The number of consecutively occurring errors before which a job will be delayed.

delay="seconds|HH:MM|HH:MM:SS|stop"

Delay before the job will be rerun.

delay="stop" Ordelay="STOP" stops a job after the specified number of consecutive errors.

XML Element <delay order after setback>

<delay order after setback

1

' setback count = "integer”

' delay = "seconds|HH:MM|HH:MM:SS"
! is maximum = "yes|no"

1

1

> </delay order after setback>

See Job. delay order after setback_,Job. max order setbacks_and Order. setback() _.
- after the 1st attempt is failed the job will be executed again after 10min.

- after the 5th attempt is failed the job will be executed again after 30min.

- after the 10th attempt the job will run one time again and goes into the error state if it fails.

Software- und Organisations-Service GmbH

April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler 33

Example:

<delay order after setback setback count="1" is maximum="no" delay="00:10"/>
<delay order after setback setback count="5" is maximum="no" delay="00:30"/>
<delay order after setback setback count="10" is maximum="yes" />

Parent Elements

<job> - Definition of jobs

Attributes

setback count="integer”

The number of successive setbacks occurring for an order. Different delays can be set for each setback - e.g. 1st

setback, 1 second; 2nd setback, 10 seconds; etc.
Specifies the number of sebacks after which an XML element applies.

For example, where setback count=5, the element applies after the 5th setback.

delay="seconds|HH:MM|HH:MM:SS"

The period an order waits after a setback before being restarted in a job.
is maximum="yes|no” (Initial value:no)
setback count= specifies the maximum number of sequential setbacks allowed. A further setback occurring after

this number of setbacks has been reached (order. setback() _) causes the JobScheduler to give the order the
error state Job chain node. error state_.

See Job. max order setbacks._.

XML Element <description>

T TS TS TS T T ST TS TR SR EEE]
1<description >

! include Includes text from a file

1</description>

A description of a job which will be shown in the HTML interface. The text should be coded in HTML. (This is only
possible if <! [CDATA[...]] > Or <include> is used, because of the strict DTD.)

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler

34

Example:

<job name="my job">
<description>

This is the description of my job:

</description>

</job>

<include file="description of my job. txt"/>

Behavior with_<base>

Replaces the <description> element in the corresponding node of the basic XML configuration .

Parent Elements

<job> - Definition of jobs

XML Element <environment>

i T T T R I I e e

\<environment >
1

. variable A Variable

1</environment>

Defines additional environment variables for a process.

Parent Elements
<job> - Definition of jobs
<process> -

<start_job> - start a Task

XML Element<file order sink>

i R e e e e e e e e T

1<file order sink

1

: state = "string"”

! remove = "yes|no”

' move to = "directory_path"
1

1

> </file order sink>

<file order sink> is implemented using the internal scheduler file order sink job.

The order is completed after the operation.

Should it not be possible to move or remove a file, then the order will be added to the blacklist. This ensures that
the still existing file can result in a new order being started. Blacklisted orders can still be removed using <

Software- und Organisations-Service GmbH

April 2016

Configuring the JobScheduler 35

remove order>_. Once the JobScheduler realises that a blacklisted file has been removed, then the file will be
deleted from the list. The file can then be re-added to the monitored directory if required.

See also Directory Monitoring with File Orders (page 165) and <file order source> (page 35).

Parent Elements

<job_chain> - Job chain
Attributes

state="string"

The state valid for a job chain node. This state is an end state.

remove ="yes|no"

remove="yes" removes the file.
Messages

[info] SCHEDULER-979 Removing file

move to="directory_path"

The file will be moved to the directory specified. An already existing file of the same name will be overwritten.
On Unix systems the file can only be moved within the same file system.

Environment variables (e.g. sHoME) are replaced by this attribute (see Settings which Allow Environment Variables
to be Called (page 106)).

Messages
[info] SCHEDULER-980 Moving file to

XML Element<file order source>

T TS TS ST S S SRS]
1<file order source

1
1 1
! directory = "directory_path" :
' regex = "regex” :
! delay after error = "seconds” :
' repeat = "no|seconds” :
' max = "integer" :
' next state = "string” :
. alert when directory miss = "boolean" :
, ing :
1 1
1 1

> </file order source>

Adds a file order source to a job chain. Every file in the source directory with a name corresponding to a regular
expression can be added to the job chain as a file order.

See also Directory Monitoring with File Orders (page 165) and <file order sink> (page 34).

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 36

Example:

<job chain name="my job chain">
<file order source directory="/tmp/input"/>
<job chain node state="first" Jjob="process file" error state="ERROR"/>
<file order sink state="remove" remove="yes"/>
<file order sink state="ERROR" move to="/tmp/input.error"/>
</job_chain>

Parent Elements

<job_chain> - Job chain
Attributes

directory="directory_path"

the path to the directory containing the files.

Environment variables (e.g. sH0ME) are replaced by this attribute (see Settings which Allow Environment Variables
to be Called (page 106)).

regex="regex"

A regular expression used to select files according to their names.

delay after error="seconds” (Initial value:repeat)

The default setting is the repeat="_." attribute value.

Should the directory not be readable, then the JobScheduler will first send an e-mail and then repeatedly try to read
the directory until it is successful. The JobScheduler will then send a further mail.

Messages
[infol SCHEDULER-984 Recovered from previous error in directory

repeat ="no|seconds”
The JobScheduler checks for changes in the directory on a regular basis. . The length of time between these
checks can be set here.

The default setting on Windows systems is repeat="60". Further, the JobScheduler also uses the Windows
system directory monitoring, in order to be able to react immediately to a change in a directory. This is renewed
regularly after the repeat interval has elapsed.

On Unix systems the default value is repeat="10". This means that the directory is checked every 10 seconds for
changes.

Messages
[info] SCHEDULER-984 Recovered from previous error in directory

max ="integer” (Initial value:100)

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 37

The maximum number of files to be taken as orders. Should more files be present, then these extra files are taken
on as soon as the first job in the job chain can take on a new order.

Messages
[info] SCHEDULER-985
[info] SCHEDULER-986

next state="string"

Should it not be possible to start the orders in the first job of the job chain, then the initial state of the orders can be
specified using this attribute.

alert when directory missing="boolean"

The warning for a missing directory can be activated/deactivated using this attribute.

XML Element <holiday>

T TS TS TS T T ST TS TR SR EEE]
1<holiday

. date = "yyyy-mm-dd"
'> </holiday>

Defines a holiday - a day on which the JobScheduler should not run a job.

Example:

<holiday date="2004-12-24"/>

Behavior with_<base>

Replaces the <holiday> element in the corresponding node of the basic XML configuration with the attribute date=

Parent Elements

<holidays> - Holidays
Attributes

date="yyyy-mm-dd"

The date of the holiday.

XML Element <holidays>

P e e e e e e T T e e e e e i I T T 1

1<holidays >
. weekdays Operating Periods for Weekdays
' holiday Holidays on Which a Job Should not Run

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler

38

include Includes text from a file
</holidays>

Example:

<holidays>
<holiday date="2004-12-24"/>
<holiday date="2004-12-25"/>
<holiday date="2004-12-26"/>
<holiday date="2004-12-31"/>
<include file="holidays-2007. xml"/>
<include file="holidays-2008. xml"/>

</holidays>

Parent Elements
<config> - Configuration

<run_time> - The Job Run Time

XML Element <http. authentication>

e e i T T I e e e e e i e T T

1<http. authentication

scheme = "scheme" Authentication
>

http. users HTTP User Authentication
</http. authentication>

r

The JobScheduler usess this element to obtain authentication from the HTTP client (browser) according to the

»Basic« RFC 2617 scheme.

The authentication also applies for the <web service>_.

Example:

<http server>
<http. authentication>
<http. users>
<http. user name="Rose Kemp"
password md5="701d051b67bc5fc7¢c7¢c919d01f0aa7cb"/>
<http. user name="Jeff Beck"
password md5="eb6801a466d537663%9e29cdldllecb9f"/>
</http. users>
</http. authentication>

</http server>

Behavior with_<base>

Supplements the <http. authentication> element in the corresponding node of the basic XML configuration .

Attributes specified here have precedence over those entered in the basic XML configuration.

Parent Elements

Software- und Organisations-Service GmbH

April 2016

Configuring the JobScheduler 39

<http_server> - HTTP server
Attributes

scheme="scheme" (Initial value:basic) Authentication

Only the scheme="basic" authentication scheme is implemented.

XML Element <http. user>

P e e e e e i T e e T T T I I e e e e e i I T 1
1
1

<http. user :
! name = "name” User Authentication '
' password_md5 = "string"” The Password MD5 Sum :
1 1
1 1

> </http. user>

See <http. authentication> (page 38).

Behavior with_<base>

Replaces the <http. user> element in the corresponding node of the basic XML configuration with the attribute

name= .

Parent Elements
<http.users> - HTTP User Authentication

Attributes

name ="name" User Authentication

password mdS5 ="string" The Password MD5 Sum

On Unix systems the MD5 password check-sum can generally be obtained using the md5sum command:
echo -n ' password' | mdbsum

The MD5 sum comprises only the hexadecimal characters 0-9, a-f and A-F and is 32 characters long.

XML Element <http. users>

P e = e e = = = == 1

1<http. users >
. http. user HTTP User Authentication
1</http. users>

See <http. authentication> (page 38).

Behavior with_<base>

Supplements the <http. users> element in the corresponding node of the basic XML configuration . Attributes
specified here have precedence over those entered in the basic XML configuration.

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler

40

Parent Elements

<http.authentication> - HTTP Authentication

XML Element <http directory>

r
1
1
1

r

<http directory
url path
path
> </http directory>

"url_path" The first directory in a URL path
"path” File system path

Specifies a directory in the file system which is to be mapped to a directory in a URL path,

The example returns the URL http: //host: port/doc/xml/http directory. html
and the file c: \pub\html\doc\xml/http directory. html.

Behavior with_<base>

Supplements the <http directory> elementin the corresponding node of the basic XML configuration . Attributes
specified here have precedence over those entered in the basic XML configuration.

Parent Elements

<http_server> - HTTP server

Attributes

url path="url_path"” The first directory in a URL path

Specifies the first directory in a URL path, which is be mapped from a file system directory.

The directory specified should start with a forward stroke (/).

Example:

<http directory url path="/doc/" path="c:/html/my doc/" />
Creates the c: /html/my_ doc/ directory on the URL starting with /doc/ .

path="path" File system path

The file system path to be mapped to the directory specified in url path="".

Example:

path="c: \pub\html\doc\"

Environment variables (e.g. sHOME) are replaced by this attribute (see Settings which Allow Environment Variables
to be Called (page 106)).

Software- und Organisations-Service GmbH

April 2016

Configuring the JobScheduler 41

XML Element <http server>

L]
1<http server >

http directory HTTP File Directory
web service Web Service
</http server>

Behavior with_<base>

Supplements the <http server> element in the corresponding node of the basic XML configuration . Attributes
specified here have precedence over those entered in the basic XML configuration.

Parent Elements
<config> - Configuration

XML Element <include>

P e e e e e e e e e e e i e T T R R e e e e e 1

> </include>

1<include .
' file = "filename" Path to file to be included :
' live file = "path"” Path to the file to be added from the |
, configuration directory ,
! node = "xpath" XPath expression :

This element may be included in the text (outside of <! [cpaTal and 11>), in order to include source code which is
to be found in other files.

The file is read on a remote computer when such a computer is specified using <process class
remote scheduler=".">_.

Should the JobScheduler not be able to read a file:

. in the <description> element: the JobScheduler ignores errors but adds the error message to the <
description>.
. in the <script> element: the JobScheduler puts the job in the read error state. The <modify job

cmd="reread" > command allows the JobScheduler to reread a script.
Changes in include-files have no impact on a running JobScheduler.

Parent Elements

<script> - Program code
<description> - Description
<holidays> - Holidays

<params> - Parameters
Attributes
file="filename" Path to file to be included

The name of the file whose content is to be included. Should the name of the file not be absolute, then the
JobScheduler assumes different directories, independent of surrounding XML elements:

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 42

Environment variables (e.g. su0ME) are replaced by this attribute (see Settings which Allow Environment Variables
to be Called (page 106)).

live file="path"Path to the file to be added from the configuration directory

This attribute can be used directly in:

. <job><description>
. <job><params>

. <holidays>

. <script>

and specifies, for the file whose content is to be included, the file path relative to the directory of the file which the <
include> came from. This file must lie within the configuration directory tree. "/" at the beginning of this path
denotes the configuration directory root. Windows drive letters cannot be used.

When the file containing the <include> does not come from a configuration directory, the JobScheduler assumes
the configuration root directory of the installation.

A change in the file for a file-based job or order under <job><params>_0Or <order><params>_to be re-read when the
job or order comes from a configuration directory.

[ERROR] SCHEDULER-461 Path reaches beyond root (too many '.."):

[ERROR] SCHEDULER-417 Invalid name: "

Environment variables (e.g. suoME) are replaced by this attribute (see Settings which Allow Environment Variables
to be Called (page 106)).

node ="xpath" XPath expression

Only applies for <include> in <params>_and selects the <param>_elements. The default setting is
xpath="params/*".

XML Element <job>

P e e e e e e e e T T R e e e e i I T T 1

despite min_task

'<job .
' spooler id =" '
' name = "jobname" :
' title = "text" :
' order = "yes_no" Order Controlled Job :
' process class = "process_class" :
! tasks = "number” The maximum number of tasks |
' min_ tasks = "number" The minimum number of tasks ,
! kept running :
! timeout = "duration" The time allowed for an |
. operation '
' idle timeout = "duration” Limit for the waiting_for_order
' state :
' force idle timeout = "yes_no" Task ended by idle_timeout |
1 1
1 1
! priority = "process_priority" :
' temporary ="yes_no" :
! java_ options = "string" :
! visible = "yes|no|never" :
' ignore signals = "all|signalnames” :

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler

43

stop_on_error
replace
warn if shorter than

warn if longer than
enabled

description

lock. use

environment

params

script

monitor

start when directory ch
anged

delay after error

delay order after setba
ck

run_time

commands

= "yes|no”
= "yes|no”

"HH:MM:SS|seconds|percentage%"

"HH:MM:SS|seconds|percentage%"

= "yes|no" Disable a Job.

Description

Lock declaration
Environment Variables
Parameters

Program code

Job Monitor

Directory Monitoring

Job Delay after an Error
Delay Order after Setback

The Job Run Time
XML Commands

Defines a job with program code, runtime, etc.

Behavior with_<base>

Supplements the <job> element in the corresponding node of the basic XML configuration with the attribute name= .
Attributes specified here have precedence over those entered in the basic XML configuration.

Parent Elements
<jobs> - Jobs

Attributes

spooler id=

name ="jobname"

Every job has a unique name.

Should a job with the same name be defined in one of the basic configurations, then this parameter can be used to

change or supplement the settings made in that job.

title="text"

A description of the job (max. 1 line).

order="yes no" Order Controlled Job

Software- und Organisations-Service GmbH

April 2016

Configuring the JobScheduler 44

order="yes" defines a job as being order controlled. The JobScheduler will only start an order controlled job when
an order for the job exists.

A script can check this attribute using the Job. order queue_method.

process class="process_class"

Defines the name of the process class in which the job should run. Note that process classes are defined with <
process classes>_.

tasks ="number” (Initial value:1) The maximum number of tasks

A number of tasks can run in parallel from one job. This attribute specifies the maximum number of tasks for a job.
<lock. use>_:only tasks="1", which only allows one task, makes sense in combination with an exclusive lock.
min tasks="number" (Initial value:0) The minimum number of tasks kept running

The JobScheduler keeps this minimum number of tasks running. This allows order controlled tasks, which require a
long time to initialize, to be held in waiting.

Note that the <job tasks=".."> element must be large enough.

The JobScheduler will start additional tasks when:

. it is starting

. a task has ended

. at the start of a new Period (<run_time>))

. or the job is stopped by <modify job cmd="unstop">

. or all job tasks are continued with <modify job cmd="continue">
. or the job is wakened by <modify job cmd="wake">

. and fewer tasks than specified inmin_tasks are running

. and the start is allowed according to the <run time>_period

. and the job has either the pending or running states (that is, it is not being stopped or has not already
stopped).

In order to prevent an overload, the JobScheduler does not start any new tasks immediately after a task has been
completed. The completion of a task causes a new one to be started only in the following situations:

. spooler process() _is called

. The task has been waiting some time on an order (the state running waiting for order, when <job
idle timeout="0">)

. The task could start but is delayed by the Task. delay spooler process_method

. The task is a process (<script language="shell”>_) and the process has not terminated itself immediately
after starting

Messages

[ERROR] SCHEDULER-322 min_tasks= is greater than max_tasks=

[warn] SCHEDULER-970 task ended immediately after start, so min_tasks= doesn't lead to new tasks
[debug3] SCHEDULER-969 Less than min_tasks= are running. New tasks will be started. Reason:

timeout ="duration" The time allowed for an operation

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler 45

Limits the duration of a task operation (spooler_open, spooler_process etc.) or the whole task for a non-API task (<
script language="shell">_). An error does not occur when the priority of a job has not been set. Should a task
exceed the time allowed, then the JobScheduler aborts the task.

duration can be specified in seconds or in the HH: MM or HH: MM: S formats.

idle timeout="duration" (Initial value:5) Limit for the waiting_for_order state

Limits the idle time of an order controlled job (order="yes"). When a task is waiting on the next order and this idle
time is exceeded, then the JobScheduler ends the task.

The duration can be specified in seconds or in the #8: MM or HH: MM: SS formats.

idle timeout="never" allows a job to run indefinitely, only limited by <run time>_.

See also <job force idle timeout=".."> (page 42).

force idle timeout="yes no”(Initial value:no) Task ended by idle_timeout despite min_task

Note that this is only effective with <job min tasks > "0"> and <job idle timeout=".">_.

force idle timeout="yes" ends a task after idle timeout has expired, even when fewer tasks than specified
inmin tasks arerunning. min tasks only starts new tasks after the task termination.

In this way tasks can be ended which may not take up a resource such as a database too long when idle.

priority="process_priority"

Sets the priority of a task.

This attribute can be given the following values: idle, below normal, normal, above normal and high or the
numerical values allowed for the operating system being used.

An error does not occur when the priority of a job is not set.
A task with a higher priority can block the computer.

See Task. priority class._.

temporary="yes_no"

temporary="yes" defines a job as being temporary. This setting is only for <add jobs>_. A job will then be deleted
after being carried out and will no longer be recognized.

java options="string"

Is only effective when a job runs as its own process (see <process classes>_(page 70)) and either the job or

monitor is implemented in Java. The options are handed over together with the commandline option
-job-java-options_Java options. The interpretation of these options depends on Java.

visible="yes|nolnever" (Initial value:yes)

visible="no" and visible="never" make a job invisible in the results of <show jobs> and <show state>_.

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler 46

The JobScheduler makes a job visible as soon as a task has been loaded when visible="no" is set. When
visible="never" is set, then this job will never be returned when querying using the <show state>_command.

ignore signals="all|signalnames” (Initial value:no)

Is only relevant for UNIX systems.

A job whose task process ends with a signal, causes the job to be stopped. Signals are sent when the task ends
either by way of the ki11 system command or by way of a program being aborted.

If ignore signals has not been specified, then a task ending with a signal stops the job (with the message
SCHEDULER-279).

ignore signals="all" means that a job will not be stopped by a signal.

A list of signal names (separated by blanks) can be specified instead of "a11". The following signal names are
recognized, depending on the operating system: STGHUP, STGINT, SIGQUIT, SIGILL, SIGTRAP, SIGABRT, SIGIOT,
SIGBUS, SIGFPE, SIGKILL, SIGUSR1, SIGSEGV, SIGUSR2, SIGPIPE, SIGALRM, SIGTERM, SIGSTKFLT, SIGCHLD,
SIGCONT, SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU, SIGURG, SIGXCPU, SIGXFSZ, SIGVTALRM, SIGPROF, SIGWINCH,
SIGPOLL, SIGIO, SIGPWR und s1GSsys. Signal names which are not recognized by an operating system are ignored
and a warning given.

Note that because a task ending with a signal which may be ignored can cause a TCP connection error (
ECONNRESET), the JobScheduler is so configured that TCP connection errors only lead to a job being stopped when
ignore signals=".." does not apply. The JobScheduler reacts to this situation with the sCHEDULER-974_message.

See also <commands on exit code="SIGTERM'> (page 20) and the Gnuman 7 signal command.

Example:

<job name="my job" ignore signals="SIGTERM SIGKILL">

Messages

[warn] SCHEDULER-279 Process terminated with signal (name)

[warn] SCHEDULER-337 Signal is unknown on this operating system and is ignored

[info] SCHEDULER-974 Last error does not stop the job if the task aborts (after kill or crash) with any

signal listed in ignore_signals="". In this case, expect warning
SCHEDULER-279

stop on_error="yes|no" (Initial value:yes)

The default stop _on_error="yes" setting stops a job when a task ends with an exception or has an "[ERROR] "
message in its log file. An error message can then be written, for example with Log. error() _.

Specifying stop_on_error="no" does not allow a job to be stopped in this situation. Should spooler process()
end with an exception, then the JobScheduler sets the order in the error state (_<job chain node
error state=".">).

This setting is not effective, when either <delay after error>_0OrJob. delay after error_are used.

Messages

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler 47

[warn] SCHEDULER-846 After task exception and due to stop_on_error='no’, the order has been moved
to error_state="

[debug3] SCHEDULER-977 Job is not stopping because of <job stop_on_error="no">. Task error was:

[debug3] SCHEDULER-978 Job is stopping because of <job stop_on_error="yes">. Task error was:

replace="yes|no" (Initial value:yes)

replace="yes" causes any already existing job definition to be replaced. Should this not be possible - for example
because a task is running - then the JobScheduler will replace the job later.

An order controlled job (<job order="yes">_) cannot be replaced.

warn if shorter than="HH:MM:SS|seconds|percentage%"

If a job is completed in less than the specified time allowed then the JobScheduler will give out the SCHEDULER-711
warning.

The time can be specified in HH: MM or HH: MM: SS formats, as a number of seconds or as a percentage. A
percentage value is calculated from the average length of the job steps carried out up to this point as specified in
the SCHEDULER HISTORY database table.

warn_if longer than="HH:MM:SS|seconds|percentage%"
If a job is completed in more than the specified time allowed then the JobScheduler will give out the
SCHEDULER-711_warning.

The time can be specified in HH: MM or HH: MM: SS formats, as a number of seconds or as a percentage. A
percentage value is calculated from the average length of the job steps carried out up to this point as specified in
the SCHEDULER HISTORY database table.

enabled="yes|no" (Initial value:yes) Disable a Job.

With this attribute a Job can be disabled. It has the same effect as the stop command but is different displayed in
the Operations GUI.

XML Element <job chain>

T TS T T T TS E T TS S S SRS]
1<job chain

1
1 1
. name = "name” :
' visible = "yes|no|never” :
' orders recoverable = "yes|no” :
' distributed = "yes|no" :
' title = "String" :
' max orders = "postive integer” :
. process class = "String" :
. file watching process cla = "String" :
, Ss :
> :
! file order source File Order Source :
' job chain node Job Chain Nodes :
! file order sink File Order Sink :

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler

48

job_chain node. job_chai Job Chain Nodes

n

job chain node. end
</job_chain>

Job chain ends

Adds a new job chain (see the Job chain_class).

See(Drders(page 163),Job chain_, Spooler. create job chain() _and Spooler. add job chain()

Simple Job Chains - a Chain of Jobs

Simple job chains contain jobs and are described using the <job chain node>_, <file order source>_and <

file order sink> XML elements.

Superordinate Job Chains - a Chain of Job Chains

Superordinate job chains refer to other job chains and are described using the <job chain node. job chain>_.

[N

job chain node. end> XML elements. A superordinate job chain can only contain simple job chains.

Superordinate job chains cannot be used in combination with distributed orders.

Example:

<job chains>
<job_chain name="Chain_ A">

<job chain node state= "1"
<job chain node state= "2"
<job_chain node state="100" />
<job_chain node state="999" />

</job_chain>
</job_chains>
This is the same as the following JobScheduler script:

<script language="javascript"><![CDATA[
var job chain =

job chain.

job chain.

job chain.

name = "Chain A";
add job("job a", 1, 2,
add job("job b", 2, 100,
job chain. add end state(100);
job chain. add end state(999);
spooler. add job chain(job chain);
]1></script>

job="job a" next state=

job="job b" next state="100" error state="999" />

spooler. create job chain();

999
999

"2" error state="999" />

);
);

Example:
<job chains>

<job chain name="superchain">
<job chain node. job chain

state="A"
<job chain node. job chain

<job chain node. end state="OK" />

</job_chain>
</job_chains>

<job chain node. end state="ERROR" />

job chain="job chain a"

next state="B" error state="ERROR" />
state="B" job chain="job chain b"

next state="OK" error state="ERROR" />

Software- und Organisations-Service GmbH

April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler 49

Behavior with_<base>
This element may not be specified here when it has already been specified in the basic XML configuration.
<job _chain name="Name"> can be added with unique name.

Parent Elements
<job_chains> - Job Chains

Attributes

name ="name"

The name of the job chain. Note that a job chain can only be defined once.

visible="yes|nolnever" (Initial value:yes)

visible="no" and visible="never" make a job chain invisible in the results of <show job chains>_and <
show state>_.

The JobScheduler makes a job chain visible as soon as an order has been added to the chain.

orders recoverable="yes|no" (Initial value:yes)

orders recoverable="yes"

When the JobScheduler has been configured to store orders in the database, as soon as an order is added to a
job's order queue it will be also be stored in the database. After the order has completed the job chain, it will be
deleted from the database

The JobScheduler loads orders from the database on starting and setting up the job chains. See
Spooler. add job chain() _.

This attribute does not function when the JobScheduler has been configured to work without a database - see
factory. ini (section[spooler], entry db= ..) (page 98).

orders recoverable="no"

The JobScheduler does not store orders in or load orders from a database.
See Database (page 136).

distributed="yes|no" (Initial value:no)

Only works when specified in conjunction with -distributed-orders_and causes orders to be distributed over
more than one JobScheduler.

distributed="no" prevents a job chain from being processed by more than one JobScheduler. Instead, causes a
job chain to be processed on the one JobScheduler, as if it were in a non-distributed environment. Note that in this
situation, the name of the job chain must be unique in the cluster (Note that this is not checked by the
JobScheduler).

title="String"

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler 50

A job chain can also be given a title.

See also Job chain. title_.

max_orders ="postive integer” (Initial value:99999)

In general an unlimited number of orders for a job_chain could ran simultaneously. To declare the attribute
max_orders it is possible to limit this number. E.g. max_orders='1"let run the job_chain exclusively for one order. A
new order for this job_chain can only run, if the first order was finished.

The number of simultaneous orders for a job_chain is not limited, if this attribute is not set.
This attribute will take only effect if the order starts with the first node of the job chain.
process class="String"

A <process class>_can be used to to specify the default Agent or Remote JobScheduler to be used for processing
the job chain.

See How to execute Jobs and Job Chains with Agents for more information.

file watching process class="String"

A <process class>_can be used to to specify an Agent that is to be used to watch for files arriving at the Agent
host. This Agent triggers file orders for incoming files.

This process class is used to define both the <file order source> and<file order sink>..

Ifthe file watching process class attribute is empty, it defaults to the process class of the job chain.
The process class must denote only one agent.
Changing the process class at runtime will have no effect on the file order source Orfile order sink.

When the process contains both the remote scheduler attribute and the <remote schedulers>_element, the
remote schedulers element will be ignored when the process class is used for the
file watching process class attribute orfile watching process class inthe <job chain> element.

See the JobScheduler Universal Agent - Remote File Watching article for more information.

XML Element <job chain node>

T ST ST ST ST TS E TS TSR EEEE]
1<job chain node

1
1 1
' state = "string" :
' job = "job_name" :
' next state = "string” :
' error state = "string” :
' delay = "seconds" :
' on_error = "suspend|setback” :
> |
! on return codes On Return Codes :
1 1
1 1

</job_chain node>

Adds a new job chain node to a job chain (see the Job chain node_class).

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler 51

The XML elements

<job chain node state="STATE" Job="JOB" next state="NEXT STATE"
error state="ERROR STATE"/>
<job chain node state="ERROR STATE" />

correspond to the following API calls

job chain.add job("JOB", "STATE", "NEXT STATE", "ERROR STATE");
job chain. add _end state("ERROR _STATE");

See Job chain node_, Job chain. add job() and Job chain. add end state() _.

Parent Elements

<job_chain> - Job chain
Attributes

state="string"

The state valid for a job chain node.

job="job_name"

The name of the job to be called when an order reaches the state specified.

This attribute should not be specified for the end state.

Example:
<job chain node state="1" job="my job"/>

<job chain node state="2" Jjob="../job in parent folder"/>

next state="string"

An order is given the next state when the spooler process() returns return true for the order.

The default setting is the state= attribute of the following <job chain node>.

error_ state="string"

When return false is returned by a job's spooler process() method, then the order state is changed to error.

delay="seconds" (Initial value:0)

Delays an order before handing it over to a job.
on_error="suspend|setback"
After an order processing step, which the order designates as containing an error, the JobScheduler normally

allocates the order the error state state. The on error attribute can, however, be used to define another
behaviour.

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler 52

on_error="suspend" has the same effect as order. suspended =true: the JobScheduler leaves the order in its
current state, however, the next processing step is not carried out and the order is suspended.

on_error="setback" has the same effect as order. setback() _: the JobScheduler leaves the order in its current
state, the next processing step is not carried out and the order is treated in the same way as <
delay order after setback>_..

XML Element <job chain node. end>

T TS TSR ST E S S SRS]
1<job _chain node. end
: state =

1
1> </job_chain node. end>

2}
3
S
Q‘
m
>
o
(]
~—
oY)
~—
()

Sets a chain of job chains in the end state.

Parent Elements
<job_chain> - Job chain

Attributes

state="string" End state

The state valid for this job chain node.

XML Element <job chain node. job chain>

T TS TS T E TS TS TSR EEEE]
1<job chain node. job chain

1
1 1
' state = "string"” :
! job chain = "job_chain_name" :
' next state = "string” :
' error state = "string” :
1 1
1 1

> </job chain node. job chain>

Adds a new job chain node to a chain of job chains - i.e. in nested job chains.
Job chains which contain nested job chains cannot be nested in other job chains.

Job chains grouped together through nesting build a common Order_id_space, in which the uniqueness of an order
identifier is tested when the order is submitted.

The JobScheduler does not accept the submission of an order in a job chain, when the order ID has already been
allocated in that Order_id_space.

When an order within an Order_id_space is replaced in one job chain in the ID space, then to will also be replaced
in other job chains in the same Order_id_space.

Parent Elements

<job_chain> - Job chain
Attributes

state="string"

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler 53

The state valid for this job chain node.

job_chain="job_chain_name"

The job chain to which the order is to be handed over when it reaches this state.

next state="string"”

spooler process() Withreturn true from the last completed job, sets an order in this state.

The default value is the value of the state= attribute of the next job chain node.

error state="string"

spooler process() Withreturn false from the last completed job, sets an order in this error state..

XML Element <job chains>
1<job chains >

. job_chain Job chain

1</job_chains>

Example:
See <job chain> (page 47).

Behavior with_<base>

Supplements the <job chains> element in the corresponding node of the basic XML configuration . Attributes
specified here have precedence over those entered in the basic XML configuration.

Parent Elements
<config> - Configuration

XML Element <jobs>

T TS TS TS T T ST TS TR SR EEE]
1<jobs >

' job Definition of jobs
1</jobs>

Behavior with_<base>

Supplements the <jobs> element in the corresponding node of the basic XML configuration . Attributes specified
here have precedence over those entered in the basic XML configuration.

Parent Elements

<config> - Configuration

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler 54

XML Element <1lock>

P e e e e e e e e e e e i e T T R R e e e e e 1

'<lock .
' name = "name" The lock name :
, max_non_exclusive = "integer” Restricting Non-Exclusive Use :
1> </lock> :

A lock can stop two tasks from running at the same time.

See <lock. use> (page 54) for information about the use of locks.

See also <lock. remove> (page 192)

Example:

<locks>

<lock name="switching database"/>

<lock name="only three tasks" max non exclusive="3"/>
</locks>

Behavior with_<base>

Supplements the <1ock> element in the corresponding node of the basic XML configuration . Attributes specified
here have precedence over those entered in the basic XML configuration.

Parent Elements
<locks> - Declaration of locks

Attributes

name ="name" The lock name

max non_exclusive="integer" Restricting Non-Exclusive Use

The default setting is unlimited - which means that with <lock. use exclusive="no">_an unlimited number of
non-exclusive tasks can be started (but only one exclusive).

Messages

[ERROR] SCHEDULER-887 More lock holders than new max_non_exclusive=: holders

XML Element <lock. use>

T TS EmEEmEmEmEmm=- L}
'<lock. use

1
' lock = "name" The name of the lock

. exclusive = "yes|no” The lock can be made exclusive or
: non-exclusive

1
1

> </lock. use>

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 55

See also <locks>_(page 56) and <lock>_(page 54).

Example:

<locks>
<lock name="my file"/>
</lock>

<job name="my file reader" tasks="3">
<lock.use lock="my file" exclusive="no"/>

</job>

<job name="my other file reader">
<lock.use lock="my file" exclusive="no"/>

</job>

<job name="my file writer">
<lock.use lock="my file"/>

</job>

Themy file reader andmy other file reads jobs do not use the locks exclusively and can run at the same
time as other jobs.

Themy file writer job has an exclusive lock and can only run when no other job is running. This job can change
the data set and can be used with the certainty that no other jobs will attempt to read the data while this job is running.

See also Task. try hold lock() ..

Behavior with_<base>

Supplements the <lock. use> element in the corresponding node of the basic XML configuration . Attributes
specified here have precedence over those entered in the basic XML configuration.

Parent Elements

<job> - Definition of jobs
Attributes

lock="name" The name of the lock

The lock itself must have been declared using <lock>_.

exclusive="yes|no" (Initial value:yes) The lock can be made exclusive or non-exclusive

exclusive="yes" is the default setting. This means that the lock is made exclusive and that only one task can
acquire the lock and start a task. All other jobs with the same lock are added to a queue. Jobs with
exclusive="yes" are started before jobs with exclusive="no".

exclusive="no" only blocks exclusive use (exclusive="yes") . A task with exclusive="no" only exclude tasks
with exclusive="yes". The total number of tasks with exclusive="no" can be limited using <lock

max non exclusive=".">_.

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler 56

XML Element <locks>

T TS EmEEmEmEmEmm=- L}
1<locks > ,
, lock Lock Declaration ,
1</locks> :

Behavior with_<base>

Supplements the <1ocks> element in the corresponding node of the basic XML configuration . Attributes specified
here have precedence over those entered in the basic XML configuration.

Parent Elements
<config> - Configuration

XML Element <monitor>

</monitor>

e]
1<monitor :
' name = "Name" :
' ordering = "Number" :
1 > 1
1 1
' script Program code :
1 1
1 1

A monitor makes functions available which can be called before and after a class and before and after
spooler process() ..

A monitor can start the task or stop the execution of spooler process() ..

See the Monitor impl _superclass whose methods can be implemented by a monitor.

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler 57

Example:

<monitor>

<script java class="spooler job.Java monitor"><![CDATA[
package spooler job;
import sos. spooler. *;

public class Java monitor extends sos.spooler. Monitor impl

{

public boolean spooler task before() throws Exception

{
spooler log.info("SPOOLER TASK BEFORE()");

return true;

public void spooler task after() throws Exception

{
spooler log. info("SPOOLER TASK AFTER()");

public boolean spooler process before() throws Exception

{
spooler log.info("SPOOLER PROCESS BEFORE()");

return true;

public boolean spooler process after(boolean spooler process result)
throws Exception

{
spooler log.info("SPOOLER PROCESS AFTER(" + spooler process result +

")")’.

return spooler process result;

}
11></script>
</monitor>

Behavior with_<base>
This element may not be specified here when it has already been specified in the basic XML configuration.

Parent Elements
<job> - Definition of jobs

Attributes

name="Name"

The name of a monitor is an unique identifier for a monitor. More than one monitor can be specified, as long as
they have unique names.

The monitors are started in ascending sequence as specified using the ordering attribute. The monitor-methods
spooler process after() andspooler task after() are called in descending sequence.

ordering="Number"

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 58

Several monitors, if required implemented using different languages, can be specified.

The monitors are started in the order specified in the ordering attribute. spooler process after() and
spooler task after() are called in reverse order.

XML Element <month>

P e e e e e e e e e e e i e T T R R e e e e e 1

'<month .
. month = "month" :
> |
! period Operating period '
. monthdays Operating periods on particular days of the month :
' ultimos Ultimos - Operating Periods for Particular Days of the Month - '
, Counted from the End of the Month ,
. weekdays Operating Periods for Weekdays :
1 </month> :

T

Sets the periods for a particular day of the month.

In contrast to other elements, <month> does not take over the attributes from <run time>_or the default <period>
settings.

When <month> is set, then values of <weekdays>_, <monthdays>_Or <ultimos>_directly set under <run time>_do
not apply.

Parent Elements

<run_time> - The Job Run Time
Attributes
month="month"

One of more names of months, seperated by empty spaces (" "): "january", "february", "march", "april",
"may","june","july", "august", "september", "october", "november", "december".

XML Element <monthdays>

P e e e e e e e T T e e e e e e I R 1

'<monthdays >

' day Periods for Particular Days :
' weekday Periods for a Particular Week Day :
1</monthdays> :

Sets the operating period for a particular day of the month.

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler

59

Example:

<monthdays>
<day day="1">
<period begin="10: 00" end="12:00"/>
</day>
<day day="2">
<period begin="08:00" end="12:00"/>
<period begin="15:00" end="18:00"/>
</day>
<weekday day="monday" which="1">
<period single start="02:00"/>
</weekday>
</day>

month at 02:00.

The example defines the operating periods as being the first day of the month, from 10:00 to 12:00 and the second
day of the month from 08:00 to 12:00 and 15:00 to 18:00. In addition, the job should be run on the first Monday of the

Example:

<monthdays>
<day day="5">
<period single start="16:00"/>
</day>
</monthdays>

This example starts a job on the 5th of each month at 16 Uhr.

Behavior with_<base>

Supplements the <monthdays> element in the corresponding node of the basic XML configuration . Attributes

specified here have precedence over those entered in the basic XML configuration.

Parent Elements

<run_time> - The Job Run Time

XML Element <on return code>

P I e e i e I T e T T e

1<on_return code

. return code = "integer” The return code from the job task.
1
>
1
. to state To State
: add order-node order pl
, ugin
1
1

</on_return code>

Specifies the behavior to be carried out at a node when the node job task exits with a specific return code.

The <on_return_code> element can be used to specify the following operations:

. Proceed to next state:

Software- und Organisations-Service GmbH

April 2016

Configuring the JobScheduler

60

<to_state>_specifies the state that is to be set for the current order if the task for the job attached to the

current node exits with the return code specified.
. Add order for a job chain:

<add_order> specifies an order that is to be started if the job at the current node exits with the return code

specified.
Return code specification Syntax

The <on_return code> element can be used to specify the following operations:

. Individual values, separated by a blank space:

<on_return code return code="1 2 3">
. Value ranges:

<on_return code return code="1..3 7..9">

"Less than" (.. 3") and "Greater than" ("7. . ") are not allowed.
. Individual values and ranges can be combined:

<on return code return code="1 7..9">
Example

Using a range of return code values with <to state>_:

Example:

<on return code return code="1..5">
<to_state state="6"/>
</on_return code>

Example

Example with add_order and a single return code value:

Example:

<on return code return code="0">
<add order =xmlns="https://jobscheduler-plugins. sos-berlin. com/NodeOrderPlugin"
job chain="Chain B">
<params>
<param name="parameterJob3" value="Job3-RC-0"/>
</params>
</add order>
</on return code>

Comments

. The NodeOrderPlugin listed in the above example has to be installed and specified in the scheduler. xml

file. See the <add_order> element.
. Return codes can only be specified once within an <on _return code> element.
. Return codes may not overlap within an <on_return code> element.

. Behavior with non-zero return _code values depends on the behavior specified in the <on return code>

child element(s):

. With a <to_state> element:

. An error will be logged for the job task.
. Processing of the current order will continue from the state specified for <to state> element.

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 61

. The order will end with the success state if no further errors occur during its processing.

. With an <add_order> element:

. An error will be logged for the job task.
. The order specified in the <add_order> element will be generated and started immediately.

Note that the execution of an <add order> element is not logged in the log file of the current
current (i.e. originating) order.
. The current order will end with the error state. Processing of the order will not be continued.

. With both <to_state> and <add_order> elements:

. An error will be logged for the job task.

. <to_state> elements will be executed before any <add order> elements, regardless of the order
in which the <to state> and <add order> elements are specified in the <on return code>
element.

This moves the current order to a different state and prevents any <add order> elements being
executed.
. The order will end with the success state if no further errors occur during its processing.
. Caution: There will be no mention in the log file of the current order that any <add order>
elements were not executed.
Usage notes Proceed to next state (<to state>)

. Specification of <to_state> for a return code other than 0 (zero) will cause an error to be logged for the job.
However, the <to_state> element can be used to continue processing of the current job chain from a desired
state under the same order ID and with the same order parameters. In this case, the error will still be logged
for the job ending in error but the order itself will end with the success state.

If <to_state> is not specified JobScheduler will revert to its default behavior and the order will proceed to the
error state.

Example:

<job chain node state="3" job="Job 3" next state="4" error state="Error">
<on return codes >

<on return code return code="1">
<add order
xmlns="https: //jobscheduler-plugins. sos-berlin. com/NodeOrderPlugin"
job_chain="Chain B"/>
<to_state state="6"/>
</on_return code>

</on_return codes>
</job_chain node>

Add order for a job chain (<add order>)

. Absolute and relative paths can be specified for job chains. Relative paths are based on the location of the
current job chain.
. The job chain path of the new order can be used relative to the current job chain.

The path should start with "./".

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 62

Example:

<job chain node state="3" job="Job 3" next state="4" error state="Error">
<on return codes >

<on return code return code="2">
<add order
xmlns="https: //jobscheduler-plugins. sos-berlin. com/NodeOrderPlugin"
job chain="Chain B"/>
<add order
xmlns="https: //jobscheduler-plugins. sos-berlin. com/NodeOrderPlugin"
job_chain="Chain C"/>
</on return code>

</on return codes>
</job_chain node>

. Add order can be specificied together with proceed to next state using the same return code at the same
node.

See the example above under "Proceed to next state".
Further information

. A description of a working example together with a downloadable configuration file is avaliable from the:

How to configure workflow control by return code handling article.

Behavior with_<base>

Supplements the <on_return code> element in the corresponding node of the basic XML configuration with the
attribute name= . Attributes specified here have precedence over those entered in the basic XML configuration.

Parent Elements
<on_return_codes> - On Return Codes

Attributes

return code="integer" The return code from the job task.

This attribute specifies a return code value or range of values.
The operation specified as a child node of the on_return code element will be carried out if the exit code returned
by a task executed by the job at the current node matches this value.

Messages

XML Element <on_return codes>

T TS T T TS e T TS S SRS E S]
1<on_return codes >
1

' on return code On Return Code

1</on_return codes>

The <on_return codes> element functions as a container for one or more <on_return _code> elements. These in
turn specify an behavior to be carried out if a job task ends with a return code that matches one of the return codes
specified in the <on_return code> element's return code attribute.

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 63

An example showing use of <on return codes> can be found in the <on return code> element page.

Behavior with_<base>

Supplements the <on return codes> element in the corresponding node of the basic XML configuration .
Attributes specified here have precedence over those entered in the basic XML configuration.

Parent Elements

<job_chain_node> - Job Chain Nodes

XML Element <param>

P e e e e e e e e e e e T T T I e e 1

value

See <params>_(page 66).

Defines the individual parameters for the JobScheduler, a Job or an Order. In general all parameters are available
with the API calls spooler. variables() _, Task. params() _respectively order. payload() _or in shell Jobs as
environment variable (with leading SCHEDULER_PARAM_)

Correspondent parameter in the JobScheduler configuration, at the Job and at the order are valid in the following

sequence:
. order
. job

. scheduler

The use of individual parameters beginning with scheduler. is not recommended as this name space is reserved
for the JobScheduler configuration settings.

The parameters can be overwritten and extended during run time.

See also variable set_class.
JobScheduler Parameters

The following parameters can be used to configure the JobScheduler:

. SCHEDULER_VARIABLE_NAME_PREFIX

. scheduler.max_kbyte_of db_log_entry

. scheduler.order.keep_order_content_on_reschedule
. scheduler.order.distributed.balanced

. scheduler.agent.keep_alive

The JobScheduler Master and Classic Agent can be configured to prevent connections from timing out by
adding a scheduler. agent. keep_alive parameter to the <params> section of the Master's scheduler.xml
file. This file is located in the $SCHEDULER DATA/config folder, where s SCHEDULER DATA is the directory used
for JobScheduler's configuration and log files.

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler 64

Example:

<params>
<param name="scheduler. agent. keep _alive" value="300" />
</params>

. The value attribute sets the interval in seconds between keep-alive packets.

A duration lower than 30s will be silently replaced by 30s.

. Keep-alive packets will not be sent if the parameter is not set or if the value attribute is empty.

. The keep-alive parameter will be forwarded to the Agent along with other task configuration parameters
for use when the Agent initiates a connection.

. Keep-alive packets will be sent across the network by the JobScheduler (either Master or Agent) that
initiates a task.

JobScheduler Master

. The Master sends keep-alive packets to Classic Agents (up to and including Classic Agent release 1.9)
via TCP connections.

. The Master log will show a sCHEDULER-711_message at the info level stating that a keep-alive packet
has been successfully sent.

Connection Keep-Alive for Master and Agent

. See the Connection Keep-Alive for Master and Agent article for more detailed information.

Delimitation

. Keep-alive packets are not created if Remote File Watching is performed by the Agent.
. Keep-alive packets are only sent for running jobs.

Important

. The JobScheduler Universal Agent (available with JobScheduler 1.10 and later) does not use keep-alive
packets. Instead, the Universal Agent sends so-called heartbeats using a secure HTTP connection. See
the <remote scheduler>_(page 71) element for information about the configuration of heartbeats.

Job Parameters

Job parameters can be called using the Task. params() method.
Order Parameters

Order parameters can be called using the order. params() method.

Behavior with_<base>

Supplements the <param> element in the corresponding node of the basic XML configuration with the attribute
name= . Attributes specified here have precedence over those entered in the basic XML configuration.

Parent Elements

<params> - Parameters
Attributes

name =""Unique Names

value=

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler 65

Environment variables (e.g. sH0ME) are replaced by this attribute (see Settings which Allow Environment Variables
to be Called (page 106)).

XML Element <param>

P s s e o e e e e e e E e e e m e E e e e e E NS e m S s— - == '

1<param

, name =
value =

> </param>

r
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

See params.

Defines the individual parameters for an order when an <add_order> element is used in the correct namespace.
Functions as a container for the <param> elements which specify the parameters for an order.

Note that any order parameters that were set for the originating order will also be forwarded to the new order.

Parameters that were set for the originating order will be overwritten by parameters set using the <param> element
that have the same name.

Correspondent parameter in the JobScheduler configuration, at the Job and at the order are valid in the following

sequence:
. order
. job

. scheduler

The use of individual parameters beginning with scheduler. is not recommended as this name space is reserved
for the JobScheduler configuration settings.

The parameters can be overwritten and extended during run time.

. SCHEDULER_VARIABLE_NAME_PREFIX

. scheduler.max_kbyte_of db_log_entry

. scheduler.order.keep_order_content_on_reschedule
. scheduler.order.distributed.balanced

Behavior with_<base>

Supplements the <param> element in the corresponding node of the basic XML configuration with the attribute
name= . Attributes specified here have precedence over those entered in the basic XML configuration.

Parent Elements

<params-node_order_plugin> -
Attributes

name =""Unique Names

value=

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 66

Environment variables (e.g. su0ME) are replaced by this attribute (see Settings which Allow Environment Variables
to be Called (page 106)).

XML Element <params>

e]
'<params >

1
1 1
' param Individual Parameters :
. copy_params Passing Parameters :
' include Includes text from a file :
| </params> :

Specifies the parameters for the JobScheduler, a job or an order. The parameters can be overwritten and extended
whilst the JobScheduler is running.

JobScheduler parameters can be called up using the spooler. variables() _method.

Job parameters are called using the Task. params() _method.

The parameters for an order can be called using the order. payload() method.

See also the variable set_and<sos. spooler. variable set> (page 79) classes.

Behavior with_<base>

Supplements the <params> element in the corresponding node of the basic XML configuration . Attributes specified
here have precedence over those entered in the basic XML configuration.

Parent Elements

<job> - Definition of jobs

<add_order> - Add an order

<config> - Configuration

<modify_order> -

<payload> -

<queued_task> -

<web_service> - Web Service

XML Element <params>
L T T T T T T R T T T T T T T T '
\<params >

, param-node order plugin

1</params>

This element is derived from a different namespace
https: //www. sos-berlin. com/repository/scheduler/1.9/scheduler. xsd that includes support for the
NodeOrderPlugin.

This element can only be used when its parent <add_order> element is used in the correct namespace.

The <params> element functions as a container for <param> elements used to specify the parameters for an order.

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler 67

See also <param>.

Behavior with_<base>

Supplements the <params> element in the corresponding node of the basic XML configuration . Attributes specified
here have precedence over those entered in the basic XML configuration.

Parent Elements
<add_order-node_order_plugin> -

XML Element <period>

P e e e e e e e e e e i e I T R e e e 1

1 <period
! begin = "hh:mm{:ss]"
end = "hh:mm{:ss]"
repeat = "hh:mm{:ss] or seconds”

absolute repeat
single start
let run
when holiday

> </period>

"hh:mm[:ss] | seconds”
"hh:mm[:ss]"
"ves _no"

_nn

Treatment of Holidays

An operating period defines when a job may run. This can be a period of time within a day (with the begin and end
attributes) or a start time (with the single start attribute).

Parent Elements
<run_time> - The Job Run Time

Attributes

begin="hh:mm[:ss]" (Initial value:00:00)

The start of the operating period for the job.

end="hh:mm{:ss]" (Initial value:24:00)

The end of the operating period. Should 1et run="no" have been set and no further operating period is
designated, then the JobScheduler ends all tasks which are running (using spooler close()).

repeat ="hh:mm[:ss] or seconds”

Should a job not already be running, then it will be started at the start of the operating period. After the job has

ended, it will be restarted after the time specified, as far as allowed by the <run time> attribute. This repeat
interval can be specified in hh:mm, in hh:zmm:ss or in seconds.

Cannot be combined with the single start= attribute.
The job will not be repeated, if repeat="0" (the default value) is set.

absolute repeat="hh:mm[:ss]| seconds”

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 68

Similar to repeat but allows the begin and end times to be specified independently of a JobScheduler's operating
period.

Starts a job, should it not already be running, at the beginning of a specified time period. Thereafter, the job will be
restarted at regular intervals. The job starting times then result from the begin time plus a multiple of the
absolute repeat interval. This repeat interval can be specified in hh:mm, in hh:mm:ss or in seconds.

Cannot be combined with the single start= attribute.

single start="hh:mm[:ss]"

The job should start at the time given.

Cannot be used in combination with the begin=, end= or repeat= attributes.

let run="yes no"

This attribute can only be used for jobs and not for orders. The 1et run="no" setting should be made for order
controlled jobs.

let run="yes" allows the JobScheduler to let a task continue running, even though this is not allowed by the <
run_time> attribute.

let run="no" causes the JobScheduler to end a task (spooler_close is evoked instead of spooler_process), as
soon as the <run_time> is no longer valid.

when holiday=""Treatment of Holidays

A period landing on a holiday <holidays>_is usually suppressed. Other settings are however possible.
when holiday="suppress"

The default setting. A period landing on a holiday is suppressed.

when holiday="ignore holiday"

A period landing on a holiday is not suppressed.

when holiday="previous non holiday"

When a period occurs on a holiday, it will be brought forward to the last preceding non-holiday.

when holiday="next non holiday"

When a period occurs on a holiday, it will be postponed to the next non-holiday.

XML Element <process class>

1<process class

spooler id

"scheduler_id"

1
1 1
1 1
1 1
. name = "name" :
, max processes = "number” :
. remote scheduler = "host:port" Task execution on remote |
! computers :
. replace = "yes|no" :

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 69

>

1
1
: remote schedulers Remote Schedulers
1
1

</process class>
L= = S e e e e e e e e e e e e e e e e e m = mm e e e = e e e e = e e e e = e e e e == e e e e = e e e e = e e e e === = 1

Defines or modifies a process class.

See also <process class. remove>_(page 202).

Behavior with_<base>

Supplements the <process class> element in the corresponding node of the basic XML configuration . Attributes
specified here have precedence over those entered in the basic XML configuration.

Parent Elements
<process_classes> - Process Classes

Attributes

spooler id="scheduler_id"

An element having this attribute is only active when the attribute is either:
. empty

. set to the -id= JobScheduler start parameter
. or when the JobScheduler -id_option is not specified when starting the JobScheduler.

name ="name"

The name of the process class. Should this attribute be missing or empty (") then the default process class will be
changed.

See the process class= attribute of the <job> (page 42) element.

See the process class= attribute of the <job chain> (page 47) element.

max_processes ="number” (Initial value:30)

Limits the number of processes.

Some operating systems limit the number of processes which the JobScheduler can start. The number of
processes configured here should not exceed the number allowed by the operating system. A value below 64 is
usually safe.

For Microsoft Windows systems, the maximum number of processes that are allowed to be executed in parallel is
currently 30.

remote scheduler="host:port" Task execution on remote computers

Specifies the remote computer on which the tasks of this process class are to be executed. This computer is
specified using its host name or IP number and TCP port (see <config tcp port=".."> (page 21)).

The remote computer must allow access with <allowed host level="all">_.

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 70

Tasks executed communicate with the controlling JobScheduler via the API. However, the following points should
be noted:

. <include>_ within <script>_is executed by a task process. The file to be included is thereby read by the
computer which carries out the task.

. The subprocess. timeout_and Task. add pid() _methods do not work. The JobScheduler cannot terminate
remote subprocesses whose time limits have been exceeded.

. Log. log file() _is, as with almost all methods, carried out on the computer on which the JobScheduler is
running and thereby accesses the files of its local file system.

Some settings are taken from the remote instead of from the controlling JobScheduler:

. sos. ini _(section[javal, entry javac= ..)
. factory. ini (section[spooler] , entry tmp= ..)

D <config java options="..">

. <config java class path=".">

. <config include path="..">

Messages

[warn] SCHEDULER-849 Timeout is not possible for a subprocess running on a remote host (it cannot be
killed), pid=

[warn] SCHEDULER-850 After lost connection to remote scheduler, process is going to be killed

[info] SCHEDULER-848 Task pid= started for remote scheduler

replace="yes|no" (Initial value:yes)

replace="yes" replaces the existing process class.

replace="no" only changes the attributes which are set by the process class.

XML Element <process classes>

T TS T T T ST T T TS E ST S S SRS]
1<process classes

ignore = "yes|no"
>

process class Process class
</process classes>

Behavior with_<base>

Supplements the <process classes> element in the corresponding node of the basic XML configuration .
Attributes specified here have precedence over those entered in the basic XML configuration.

Parent Elements

<config> - Configuration
Attributes

ignore="yes|no" (Initial value:no)

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler 71

ignore="yes" allows operation with process classes to be disabled. This means that tasks run as a part of the
JobScheduler process, which enables debugging of tasks and orders to be carried out.

XML Element <remote scheduler>

T TS L}
1<remote scheduler

1

' remote scheduler = "string”

' http heartbeat period = "number”
' http heartbeat timeout = "number”
1

1

> </remote scheduler>

Defines a remote JobScheduler.

Example:

<process class max processes="10">
<remote schedulers>
<remote scheduler remote scheduler="http://127.0.0.2:5000"
http heartbeat period="10"
http heartbeat timeout="15"/>
</remote schedulers>
</process class>

Behavior with_<base>

Supplements the <remote scheduler> element in the corresponding node of the basic XML configuration .
Attributes specified here have precedence over those entered in the basic XML configuration.

Parent Elements
<remote_schedulers> - Remote Schedulers

Attributes

remote scheduler="string"”

The URL of the remote scheduler - e.g. http: //127.0. 0. 2: 5000

http heartbeat period="number” (Initial value:10)

http heartbeat period specifies a number of seconds after which the Agent will send a heartbeat signal to the
Master if a HTTP operation with the Master is not otherwise performed.

The HTTP Heartbeat Period attribute should be a positive integer and less than the HTTP Heartbeat Timeout.

The HTTP Heartbeat Timeout attribute is only available with JobScheduler Universal Agents (available with
JobScheduler 1.10 and later). JobScheduler Classic Agents (version 1.9) use keep-alive packets. See the <param>
(page 63) element for more information.

http heartbeat timeout="number” (Initial value:15)

http heartbeat timeout specifies the number of seconds within which the Agent expects to receive a heartbeat
from the Master.

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 72

The HTTP Heartbeat Timeout attribute should be an integer and larger than the HTTP Heartbeat Period.

The HTTP Heartbeat Timeout attribute is only available with JobScheduler Universal Agents (available with
JobScheduler 1.10 and later). JobScheduler Classic Agents (version 1.9) use keep-alive packets. See the <param>
(page 63) element for more information.

XML Element <remote schedulers>

T ST ST ST TS TS TS TS S EEEEE]
i<remote schedulers

1

! ignore = "yes|no"

V>

: remote scheduler Remote Scheduler
1</remote schedulers>

Behavior with_<base>

Supplements the <remote schedulers> element in the corresponding node of the basic XML configuration .
Attributes specified here have precedence over those entered in the basic XML configuration.

Parent Elements
<process_class> - Process class

Attributes

ignore="yes|no" (Initial value:no)

The remote JobSchedulers specified for a process class.

XML Element <run time>

T TS ST TS S S ESmEmEEmEEmEmm=- L}
1<run_time

. time zone = "text" Time zone for a order / job / |
' schedule :
' schedule =" Operating Schedule :
' once = "yes no" :
! begin = "hh:mm([:ss]" :
' end = "hh:mm{:ss]" :
! repeat = "hh:mm[:ss] or seconds"” :
' single start = "hh:mm[:ss]" :
' let run = "yes_no" :
' when holiday =" :
> :
' period Operating period :
' at Start Time :
! date Operating Times for Particular Days :
! weekdays Operating Periods for Weekdays :
' monthdays Operating periods on particular days of the month '
' month The names of the months :
' ultimos Ultimos - Operating Periods for Particular Days of the Month - :
: Counted from the End of the Month .
! holidays Holidays :

</run_time>

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 73

<run_time> defines the times at which the JobScheduler allows the tasks of this job to run. This is achieved
through the use of operating periods (see <period>_). At startup the JobScheduler selects the first period which is
valid (that is, which has not yet ended). This operating period remains valid until its end. The JobScheduler then
selects the next possible period.

An operating period with single start is only valid at one point in time.
Daylight Saving Time

The JobScheduler recognizes the time changes at the beginning and end of daylight saving time. It always uses
local time.

A job with a start time between 02:00 and 03:00 on the night at the end of summer time may be started twice.
Shortened Form Using <period> and the begin=, end=, repeat=, let_run= and single_start= Attributes

<period>_may be used within the <run time> the elements <date>_, <weekdays> , <monthdays> and <ultimos>_,
should these possess no <period>_element of their own.

<run_time>
<period begin="07:00" end="09:00"/>
<monthdays>
<day day="1"/>
<day day="2">
<period begin="22:00" end="23:00"/>
</day>
</monthdays>
</run_time>

becomes

<run_time>
<monthdays>
<day day="1">
<period begin="07:00" end="09:00"/>
</day>
<day day="2">
<period begin="22:00" end="23:00"/>
</day>
</monthdays>
</run_time>

Should none of the <date>_, <weekdays>_,
element is applied for every day of the week.

<monthdays>_Or <ultimos>_elements be listed, then the <period>

The begin=, end=, repeat=, let run= andsingle start= attributes apply when <period>_is specified, and allow
the JobScheduler to create a similar attribute of the same name.

<run_time begin="07:00" end="09:00"/>
becomes
<run_time>

<period begin="07:00" end="09:00"/>
<run_time>

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 74

Example:

<run_ time/>

is, because of the default settings for begin= and end=, the same as

<run time begin="00:00" end="24:00"/>

is, because <run_time> is empty, the same as

<run_time>
<period begin="00:00" end="24:00"/>
</run_time>

is an operating period valid 24 hours every day. The job can always run.

Parent Elements
<job> - Definition of jobs
<add_order> - Add an order

<order> -
Attributes

time zone="fext" Time zone for a order / job / schedule

Overwrites the global time zone setting for a JobScheduler object (order, job or schedule).

See <config time zone="."> (page 21).

schedule="" Operating Schedule

Specifies the <schedule>_ that is to be used.

All other attributes and child elements are ignored.

once="yes no" (Initial value:no)

When once="yes" the Scheduler starts a job once after starting itself, in so far as this is allowed by the <run time

>. In addition persistent jobs with once="vyes" are startet instantly if they are added to a Live-Folder while the
JobScheduler is running and this is allowed by the <run time>.

begin="hh:mm[:ss]" (Initial value:00:00)
Should the <run_time> element be empty (i.e. it does not contain a <period>), then the JobScheduler will

generate an operating period using this setting. This setting is also the default setting for the <run time> child
elements (see the shortened form (page 73) above).

end="hh:mm{:ss]" (Initial value:24:00)

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 75

Should the <run time> element be empty (i.e. it does not contain a <period>), then the JobScheduler will
generate an operating period using this setting. This setting is also the default setting for the <run time> child
elements (see the shortened form (page 73) above).

repeat ="hh:mm[:ss] or seconds”

Should the <run_time> element be empty (i.e. it does not contain a <period>), then the JobScheduler will
generate an operating period using this setting. This setting is also the default setting for the <run time> child
elements (see the shortened form (page 73) above).

single start="hh:mm[:ss]"

Should the <run_time> element be empty (i.e. it does not contain a <period>), then the JobScheduler will
generate an operating period using this setting. This setting is also the default setting for the <run time> child
elements (see the shortened form (page 73) above).

let run="yes no"

This attribute determines whether a running task should be stopped or allowed to carry out further process steps
after a <run_time> period has ended. The default setting here is that a job does not carry out any further process
steps after the period has ended. The job is then ended (let_run="no").

The following applies for order controlled jobs:

When an order controlled job defines a period such as 12:00 - 14:00 and an order is started during this time, the
order will be completely carried out. After the order has been completed, the idle_timeout value is used to
determine whether the task remains active and open for further orders. It is only after the task remains started and
has accepted an order that the value of let_run will be considered.

let_run="yes": the order will be carried out.
let_run="no": the order will only be carried out when its starting time lies within the job <run_time> period.

Should the <run_time> element be empty (i.e. it does not contain a <period>), then the JobScheduler will
generate an operating period using this setting. This setting is also the default setting for the <run time> child
elements (see the shortened form (page 73) above).

when holiday=

When this element is empty (i.e. does not contain any <period>), then the JobScheduler generates a period with
this setting. Otherwise, this is the default setting for the child elements (see Shortened Form (page 73) above).

XML Element <schedule>

P e e e e e e e e e e e i e T T R R e e e e e 1

1<schedule
name = "name"
substitute = "schedule_path" A schedule for temporary

substitution

valid from
valid to

> </schedule>

"yyyy-mm-dd HH:MM]:ss]"
"yyyy-mm-dd HH:MM]:ss]"

The other elements and attributes that can be specified for <run time>_can also be specified here, with the
exception of schedule= and time-zone.

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 76

With distributed orders, a change in <schedule> only takes effect the next time the order proceeds along the job
chain.

Parent Elements

<schedules> - Timetables
Attributes

name ="name"

The schedule name.

A named schedule can be called up using <run time schedule=".">_.

substitute="schedule_ path" A schedule for temporary substitution

The schedule specified using substitute="schedule path" should be replaced with the temporary schedule
defined here.

The substitution period is specified using valid from= and valid to=.

A temporary schedule cannot be directly called using <run time schedule=".."> .
Messages

[ERROR] SCHEDULER-463 schedule: substituted 'schedule’ is a substitute

[info] SCHEDULER-705 Substitute 'schedule' is valid now

[info] SCHEDULER-706 Standard 'schedule’ is valid now

valid from="yyyy-mm-dd HH:MM[:ss]"

If substitute= has been specified and valid from= not specified, then the schedule specified will be substituted
immediately.

Messages
[ERROR] SCHEDULER-465 'schedule’ overlaps schedule
[ERROR] ~ SCHEDULER-466 'schedule’ is a substitute for another schedule and cannot be used directly

valid to="yyyy-mm-dd HH:MM][:ss]"

If substitute= has been specified and valid from= not, then substitution will continue indefinitely.

Messages

[ERROR] SCHEDULER-464 schedule: valid_from=""> is not before valid_to=""

[ERROR] ~ SCHEDULER-465 'schedule’ overlaps schedule

[ERROR] ~ SCHEDULER-466 'schedule’ is a substitute for another schedule and cannot be used directly

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 77

XML Element <schedules>

P e e e e e e e e e e e i e T T R R e e e e e 1

1<schedules >
1

: schedule Schedule

1</schedules>

Behavior with_<base>

Supplements the <schedules> element in the corresponding node of the basic XML configuration . Attributes
specified here have precedence over those entered in the basic XML configuration.

Parent Elements
<config> - Configuration

XML Element <script>

P e e e i T T T e e e e e e e e e T T T I I R 1

1<script :
' language = "language” :
' com class = "com_class_name" :
! filename = "file_name" :
1 2 1
! java_class = "fava_class_name" :
' java_class_path = "java_class_path" :
B !
1 1
' include Includes text from a file :
1 </script> :

The program code to be executed is specified here, either direct as text, or indirect as a reference to binary code.

Source code can be included as text in <script>. It can be included in <[cpaTal and 1] >.

Behavior with_<base>

Supplements the <script> element in the corresponding node of the basic XML configuration . Attributes specified
here have precedence over those entered in the basic XML configuration.

The script can be added to a script defined in the a basic configuration.

Parent Elements
<config> - Configuration
<scheduler_script> -
<job> - Definition of jobs

<monitor> - Job Monitor
Attributes

language="language"

The language of the program code. Is not used in conjunction with the com class. Case is not important here.

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 78

com class="com_class_name"

The name of a COM-Class (Windows only). The COM class can implement the spooler_open(), spooler_process()
etc. methods.

filename="file_name"

Should the name of the dll which implements the COM class not be registered, then its name can be given here, in
conjunction with the com class attribute.

java_class="java_class_name"

Should a job be implemented as a Java class, then the class name must be defined using this attribute.

A name specified in the basic configuration can be overwritten here. The next task (running in a separate process)
uses a new class.

java class path='java_class_path"

Allow a job-specific Class-Path.

This java classpath will be prepend to the java classpath customized in the factory.ini

XML Element <security>

P e e e e e e e T T e e e e e i I T T 1

1<security :
' ignore unknown hosts = "yes_no" '
V> |
! allowed host Allowed Host Computers :
1</security> :

<security> defines the computers and networks which are allowed to send commands per TCP und UDP.

Behavior with_<base>

Supplements the <security> element in the corresponding node of the basic XML configuration . Attributes
specified here have precedence over those entered in the basic XML configuration.

Parent Elements
<config> - Configuration

Attributes

ignore unknown hosts="yes no"(Initial value:no)

The JobScheduler ignores unrecognized or unresolved host hames when ignore unknown hosts="yes" in <
allowed host>.

This attribute only affects the <al1lowed host> defined here and not the basic configuration.

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler

79

XML Element <service request>

1<service request

: url = "url"

>

. web service Web Service

' content Content of a Web Service Request
1

1

</service request>

Example:

<service request url="http://host. company. com: 80/web service">
<content>
<my request>

</my request>
</content>
</service request>

<service request> ftritt an zwei Stellen auf:

. Als Eingabe einer XLST-Transformation mit <web service request xslt stylesheet=".">_.
. Als Ergebnis einer XLST-Transformation mit <web service forward xslt stylesheet="..">_.
Attributes
url="url"

The Web Service URL

XML Element <service response>

\<service response >
1

' content Content of a Web Service Request

1</service response>

XML Element <sos. spooler. variable set>

P I E T T E E T TE R

1<sos.spooler. variable set >
1

. variable A Variable

1</sos. spooler. variable set>

Example:

<sos. spooler. variable set>
<variable name="paraml" value="11111">
<variable name="param2" value="2222">
</sos.spooler. variable set>

<sos. spooler. variable set> is used when saving the order. payload in the database.

See also <params>_(page 66).

Software- und Organisations-Service GmbH

April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler 80

XML Element <spooler>

T TS TS TS T T ST TS TR SR EEE]
1<spooler > ,
' config Configuration :
1</spooler> :

XML Element <start job>

T TS TS TS T E TS E S S S EEEEE]
I<start job :
' job = "job_name" :
! name = "name” :
' after = "number" :
' at = "yyyy-mm-dd hh:mm:ss | now | '
' period" '
! force = "yes|no” :
! web service = "name" :
> :
! environment Environment Variables :
' params Parameters :
1</start job> '

Example:

<start job job="my job" at="now">

<params>
<param name="number" value="100"/>

</params>
</start job>

Parent Elements
<commands> - XML Commands

Attributes

job="job_name"

The job name.

name ="name"

A task can be given a name here.

after="number"

A delay - the number of seconds after which a task should be started.

at="yyyy-mm-dd hh:mm:ss | now | period” (Initial value:now)

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 81

The time at which a task is to be started. <run time>_is deactivated.
Relative times - "now", "now + HH: MM[: SS]" and "now + SECONDS" - are allowed.
at="period" allows a job to start when allowed by <run time> (that is in the current or next period).

force="yes|no" (Initial value:yes)

force="no".

. A job that with the "stopped" state will remain in this state.

. If a start time has been specified with either <run time> or <schedule>_and this does not allow a job to start
then the JobScheduler will postpone the start to the next period.

. This means that at="now" has the same effect as at="period".

force="yes":

. This means that at="now" has the same effect as at="period". A job that with the "stopped" state will be
immediately started.

. A job with a start time specified using at= will be started at this time, regardless of whether or not a run-time
period has been specified using <run time>_Or <schedule>_.

web service="name"

After a task has been executed, it is transformed with a style sheet and handed over to a Web Service.

See <web service>_(page 83).

XML Element <start when directory changed>

T TS T TSRS TEEEE S SRS E S]
1<start when directory changed

directory = "path”
regex = "regex”
> </start when directory changed>

<start when directory changed directory="directory" regex="regex"/> functions the same as a
programmed start
start when directory changed("directory", "regex").

A task is started should a monitored directory be removed after the JobScheduler has been started. At the same
time the current monitoring job will be stopped. No further tasks will be started (because the job has been stopped).

The job should be regularly restarted using <run time repeat="."> and<delay after error> used.

See Directory Monitoring with File Orders (page 165) and Job. start when directory changed() _.

Parent Elements
<job> - Definition of jobs

Attributes
directory="path"

A change in the directory (the addition or deletion of a file in the directory) leads to the start of a task. This also
occurs when the directory being monitored itself is deleted.

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler 82

Environment variables (e.g. sH0ME) are replaced by this attribute (see Settings which Allow Environment Variables
to be Called (page 106)).

regex="regex"

Only file names which correspond with this regular expression are noted.

Deleting a file whose name corresponds with the regular expression does not cause the job to be started.

XML Element<to state>

T TS ST TS S S S SRS]
1<to_state

! state = "integer”

1> </to_state>

<to_state> specifies the state within the current job chain that is to be moved to next. This element will be
triggered if a job returns the return code specified in the return code attribute of a parent <on return code>
element.

The function of the <to state> element - in particular when used together with <add order> in an <
on return code> element is described on the <on return code>_element page.

Parent Elements
<on_return_code> - On Return Code

Attributes

state="integer"

The state within the current job chain that is to be moved to next.

XML Element <ultimos>

T TS TS TS T T ST TS TR SR EEE]
1<ultimos >

' day Periods for Particular Days

1</ultimos>

Sets the operating period for a particular day of the month - counted from the end of the month.

Example:

<ultimos>
<day day="0">
<period begin="10:00" end="12:00"/>
</day>
<day day="1">
<period begin="08:00" end="12:00"/>
<period begin="15:00" end="18:00"/>
</day>
</ultimos>

Defines the operating periods as being the last day of the month, from 10:00 to 12:00 and the second last day of the
month from 08:00 to 12:00 and 15:00 to 18:00.

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 83

Behavior with_<base>

Supplements the <ultimos> element in the corresponding node of the basic XML configuration . Attributes
specified here have precedence over those entered in the basic XML configuration.

Parent Elements

<run_time> - The Job Run Time

XML Element <variable>

T TS EmEEmEmEmEmm=- L}
'<variable

name =
value =
> </variable>

r
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Behavior with_<base>

Supplements the <variable> element in the corresponding node of the basic XML configuration with the attribute
name= . Attributes specified here have precedence over those entered in the basic XML configuration.

Parent Elements

<environment> - Environment Variables

<sos.spooler.variable set> - Variable Set

Attributes

name =

The name of the environment variable. The use of upper / lower case is not significant on Windows machines.

The same name can be used repeatedly, should it be desirable to extend the value (see the example with paTH).

value=

The value of an environment variable which has previously been set using <variable> can be returned using '$'.

XML Element <web service>

1 <web_service

Web Service response
Forwarding after an order or task has
been completed

forward xslt stylesheet "pat

1
1 1
. name = "name" The service name in the JobScheduler '
: url path = "url_path" The URL path used to reach a service :
. job _chain = "job_chain" The job chain executing a service '
' timeout = "seconds" Waiting time :
, request xslt stylesheet = "path” Transforms a request into a |
, JobScheduler command ,
: response xslt stylesheet = "path"” Transforms a reply to a command intoa |
: |
1 1
1 1
1 1
1 1

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 84

debug = "yes|no"
>
params Parameters

1
1
1
1
1
1
1 .
1</web service>
L

Example:

<web service

name = "my web service"

url path = "/webservice"

job chain = "my service job chain"
/>
Example:

<web service

name = "my web service"

url path = "/webservice"

request xslt stylesheet = "$SCHEDULER CONFIG/web service request.xsl"
response xslt stylesheet = "$SCHEDULER CONFIG/web service response. xsl"
forward xslt stylesheet = "$SCHEDULER CONFIG/web service forward. xsl"

/>

Web services can be set up to create orders or tasks and immediately answer requests. The results of these orders
or tasks can be forwarded to another Web Service.

The TCP port for the HTTP-Server is specified using <config tcp port=".">_.

The Procedure with job_chain

The JobScheduler creates an order in response to a HTTP-POST to the Web Service URL. It then adds this order
to the job chain queue. Jobs can access the HTTP data using Order. web service operation_. The HTTP query
is answered using the Web service response. send() method.

The Procedure with request_xslt_stylesheet
In this case a HTTP-POST to the Web Service URL initiates the following steps:
Error Handling

When it is not possible to forward an XML document using POST, then a "404 Bad Request" HTTP error code will
be generated.
An error in the transformation causes a HTTP "500 Internal Server Error" error code.

Forwarding Request Results

Orders and tasks can be allocated to a Web Service. In this case, the <add order> and <start job>_commands
are given the new web service="service name" attribute.

Such orders and tasks are transformed by forward xslt stylesheet and forwarded as <order>_oOr <task>_,
once they have been completed and only if the Web Service has been allocated a forward xslt stylesheet:

<order service="service name" last job="job name" .>
<payload>
<params>

</params>

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler 85

</payload>

<log last error="." last warning="."/>
</order>
and
<task job="." .>

<log last error="." last warning="."/>
</task>

The result of the transformation is a <service request>_:

<service request url="url">
<content>..data..</content>
</service request>

The scheduler_service_forwarding Job Chain

The JobScheduler packs the <service request>_in the payload of a new order which it then hands over to the
predefined scheduler service forwarding job chain.

The scheduler_service_forwarder Job

The only job in the scheduler service forwarder job chain. Uses a URL to make a HTTP connection, transfers
data using POST and waits for the answer, which it then logs.

The properties of this job can be defined in the configuration file in the same way as if the job were published using
<base>_. For example:

Example:

<job name="scheduler service forwarder">
<delay order after setback setback count="1" delay="00:01"/>
<delay order after setback setback count="2" delay="01:00"/>
<delay order after setback setback count="3" delay="24:00"/>
<run_ time>

<period begin="07:00" end="17:00"/>

</run time>

</job>

The job has been implemented in Java (see also <web service forward xslt stylesheet=".."> (page 83)).

Behavior with_<base>

Supplements the <web_service> element in the corresponding node of the basic XML configuration . Attributes
specified here have precedence over those entered in the basic XML configuration.

Parent Elements

<http_server> - HTTP server
Attributes

name="name" The service name in the JobScheduler

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 86

url path="url_path" The URL path used to reach a service

This path should start with a forward slash (/).

Environment variables (e.g. su0ME) are replaced by this attribute (see Settings which Allow Environment Variables
to be Called (page 106)).

job_chain="job_chain" The job chain executing a service

A Web Service request creates a new order which is added to the job chain.
Cannot be used with the request xslt stylesheet and response xslt stylesheet attributes.

See Order. web service operation..

timeout ="seconds" Waiting time

When an order is not forwarded to the first job within the allocated waiting time, then the JobScheduler will reject
HTTP call with "504 Gateway Timeout" and cancel the order with a SCHEDULER-290_message.

request xslt stylesheet="path” Transforms a request into a JobScheduler command

The path to the XSLT style sheet with which the XML document forwarded using HTTP-POST is transformed into a
JobScheduler command.

Cannot be used with the job_chain attribute.

Environment variables (e.g. sHOME) are replaced by this attribute (see Settings which Allow Environment Variables
to be Called (page 106)).

response xslt stylesheet="path” Transforms a reply to a command into a Web Service response

The path to the XSLT style sheet used to transform the XML result of the JobScheduler command into an XML
document. This style sheet is used to answer a Web Service query.

Cannot be used with the job_chain attribute.

Environment variables (e.g. sHOME) are replaced by this attribute (see Settings which Allow Environment Variables
to be Called (page 106)).

forward xslt stylesheet="path" Forwarding after an order or task has been completed

Valid for an order which has been started with <add order web service="..">_or a task with <start job
web service="."> and forward xslt stylesheet has been specified. Transforms the order or task with the
style sheet to a <service request>_, which in turn calls another Web Service.

Cannot be used with the job_chain attribute.

Requires Java and the class xercesImpl.jar class archive in the cLass PATH (see <config
java class path="../xercesImpl.jar">).

Environment variables (e.g. sHoME) are replaced by this attribute (see Settings which Allow Environment Variables
to be Called (page 106)).

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler

87

debug="yes|no" (Initial value:no)

OnIy when request xslt stylesheet is specified:

debug="vyes" - the JobScheduler allows internally created XML documents to be saved in the directory specified

with -1og-dir_:

The JobScheduler does not clean up the files.

XML Element <weekday>

P i R T T e e e

1 <weekday

' day = "weekday"
' which = "integer”

>

' period Operating period
1</ weekday>

Sets the run time for a particular day of the month.

Example:

<monthdays>
<day day="1">

</day>
<day day="2">

</day>
</monthdays>

15:00 to 18:00.

<period begin="10: 00" end="12:00"/>

<period begin="08:00" end="12:00"/>
<period begin="15: 00" end="18:00"/>-->

Sets the run time for the first day of the month from 10:00 to 12:00 and for second day from 08:00 to 12:00 and from

Example:

<monthdays>
<day day="5">
<period single start="16:00"/>
</day>
</monthdays>

Start a job on the 5th of a month at 16:00.

Behavior with_<base>

Supplements the <weekday> element in the corresponding node of the basic XML configuration . Attributes

specified here have precedence over those entered in the basic XML configuration.

Parent Elements

<monthdays> - Operating periods on particular days of the month

Attributes

Software- und Organisations-Service GmbH

April 2016

Configuring the JobScheduler

88

day="weekday"

The name of the week day: "monday", "tuesday", "wednesday", "thursday", "friday", "saturday" and

"sunday".

More than one day can be specified by leaving an empty space between the names of the days.

which="integer"

which="1" bis which="4": From the first to the fourth week days in a month.

which="-1" bis which="-4": From the fourth-last to the last week days in a month.

XML Element <weekdays>

i e T e e e e e e e e T I T T I

| <weekdays >
' day Periods for Particular Days
'</weekdays>

Sets the operating period for particular weekdays.

Example:

<weekdays>
<day day="1">
<period begin="10: 00" end="12:00"/>
</day>
<day day="2">
<period begin="08:00" end="12:00"/>
<period begin="15:00" end="18:00"/>
</day>
</weekdays>

Defines Mondays 10:00 to 12:00 and Tuesdays 08:00 to 12:00 and 15:00 to 18:00 as being operating periods.

Behavior with_<base>

Supplements the <weekdays> element in the corresponding node of the basic XML configuration . Attributes

specified here have precedence over those entered in the basic XML configuration.

Parent Elements
<run_time> - The Job Run Time

1.2 Configuration Using Hot Folders

Jobs, job chains, permanent orders, process classes and locks (referred to as objects in the following section) can
be stored in individual files, which the JobScheduler then automatically processes after any changes are made to
these objects. Hot Folders are directories which are monitored by the JobScheduler. It creates, modifies and
deletes jobs, job chains and other objects from files which are added to, modified in or deleted from these

directories.

Software- und Organisations-Service GmbH

April 2016

Configuring the JobScheduler 89

1.2.1 Configuration Directory

The JobScheduler reads the objects described above from the configuration directory and its sub-directories. The
configuration directory can be set using:

. <config configuration directory="..">_, the default setting is the . config/1ive directory specified in
the configuration file.
. -config_. in which case the JobScheduler expects to find the configuration file in the configuration directory

under the name scheduler. xml. (The default setting is. /config)

The JobScheduler monitors the configuration directory and its sub-directories and automatically reads out files
which have been added and changed. Deletion of a file leads to the corresponding object in the JobScheduler
being deleted.

On Windows systems, the JobScheduler uses the operating system directory monitoring and therefore notices
changes immediately. Furthermore, it checks the directories at minute intervals.

On Unix systems, the JobScheduler monitors the directories at intervals of between 5 and 60 seconds. Should no
change occur in a directory, the interval is 60 seconds. After a change occurs, the JobScheduler reduces the
monitoring interval to five seconds - should no further change occur, the interval is increased in steps back up to
sixty seconds.

Caution!
Folders whose names start with a . (dot) will not be monitored with versions 1.5.xx of the JobScheduler engine and
newer. Configuration files stored in such folders are ignored.

1.2.2 Files for Process Classes, Locks, Jobs, Job Chains and Permanent Orders

These files contain the XML elements defining objects as follows and are processed according to the following
naming convention:

The name= attribute should not be specified here. Should it be necessary to define it here, then it must correspond
with the file name.

The replace= and spooler id= attributes are not valid here.

Example of an Order Controlled Jobs: File hello world. job. xml:

<job order="yes">
<script language="shell"><![CDATA[
echo hello world
]1]1></script>
</job>

Example of a Job Chain : File echo hello. job chain. xml:

<job_chain>

<job chain node state="start" job="hello world" next state="success"
error state="error"/>

<job chain node state="success"/>

<job chain node state="error"/>
</job _chain>

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 90

Example of an Order: File echo hello, echo trigger. order. xml;

<order>

<run_time>
<period repeat="3600"/>
</run_time>

</order>

1.2.3 Directory Mirroring with the JobScheduler

The JobScheduler creates an object corresponding to each file possessing a recognised file name ending or
extension (. job etc.) and links it with the file. The JobScheduler then monitors the time stamp of each file and in
the event of a change occurring proceeds as follows:

A file name added to the directory causes the JobScheduler to create a new, empty object, which is linked to
the file. The object can be inspected using <show state>_. For example, a xxx. job. xml file is mirrored in the
JobScheduler with the <job name="xxx">_object, even when the file may not be readable or empty.

A deleted file causes the mirrored object to be deleted from the JobScheduler. Note that deletion is generally
delayed, because, for example, a job must wait for the end of a task.

Should a file be re-added to the directory before the deletion process has been completed, then the
JobScheduler will proceed as if a change had been made to the file.

After a change has been made to a file - i.e. a change has occurred in its timestamp - then the JobScheduler
will read the file. If the file can be loaded, then the JobScheduler changes process classes and locks
immediately, whereas jobs, job classes and permanent orders are changed after a delay. This allows
operations to be completed which are currently being carried out using the object which is to be changed. A
more detailed description of this follows below.

An error occurring whilst a file is being read does not affect a corresponding and already existing object. The
JobScheduler notes the error in the object and sends an e-mail. <show state>_shows the error.

Objects with the same (file) names can be present in different directories. The JobScheduler differentiates
between these objects through their paths. When it is necessary to link to objects from other directories - e.g.

<job process class="/my project/multi. process class. xml"/>

<job _chain node job="/other project/hello world"/>
then the paths must be specfiied - either relatively or absolutely.

1.2.4 Effects of the Change and Delete Commands

Commands causing changes to be made to objects do not cause the same changes to be made to the
corresponding files.

Commands causing objects to be deleted cause the corresponding files to be deleted.

1.2.5 Behaviour of Individual Object Types

1.2.5.1 Process classes

Changes made to a process class file are immediately taken over by the JobScheduler.

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 91

To delete a process class, the JobScheduler first stops all the related tasks. The process class is only deleted when
all the tasks have been ended. Until this takes place, the JobScheduler behaves as if the process class has been
exhausted.

1.2.5.2 Locks

The JobScheduler immediately takes over changes made to a lock.

To delete a lock, the JobScheduler first stops all related tasks. The lock is only then deleted, when all the tasks
have been ended. Until then, the JobScheduler does not start any further jobs and does not allow any other task
access to the lock.

1.2.5.3 Jobs
The JobScheduler only takes on a change to a job after all associated tasks have been completed.
The JobScheduler behaves in the same way when deleting a job object. No new tasks will be started.

Should a process class or a lock for a job be missing, then the JobScheduler behaves as if the process class were
exhausted or the lock unavailable.

1.2.5.4 Job chains

The JobScheduler only processes changes to a job chain after all the orders in the chain have completed their
jobs. This stops further job steps being initiated.

Orders in job chain nodes with the same order state are carried over by the JobScheduler into the changed job
chain.

The JobScheduler proceeds in the same manner when deleting job chains.

Should a job chain be missing a job, then orders will collect in the job chain nodes, in the same way as if the job
was not ready for execution.

1.2.5.5 Nested Job Chains

Should a job chain be missing a nested job chain <job chain node. job chain>_, then the complete (parent) job
chain will remain unavailable. All subordinate (child) job chains must be available before the JobScheduler can
determine whether or not the order identifiers are unique.

In the same way, a subordinate job chain will only be deleted once the superordinate (parent) job chains have been
deleted.

1.2.5.6 Permanent Orders

Permanent orders are handled differently to all the other objects. On the one hand, the names of permanent orders
have two parts (50b _chain= and id= instead of name=) and on the other, the JobScheduler does not always take
account of changes made to permanent order files. The JobScheduler only takes account of deleted or changed
permanent order files, when:

. the order is not recognised,;
. the order has not been started or
. the order is to be repeated by way of <run time>_but has not yet been started.

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 92

1.2.6 The <show_state> Command

This command returns an <file based> answer for every file-based object.

The <replacement>_answer indicates when the JobScheduler is in the process of replacing objects from hot
folders (jobs, job chains, orders, locks and process classes).

<removed>_indicates that a file has been deleted but the object associated with the file has not yet been deleted.

1.3 Central Configuration Using a Supervisor JobScheduler

In the centralised administration of the configuration of objects such as jobs, job chains, orders and locks, so called
"Workload JobSchedulers" register themselves with a central "Supervisor JobScheduler". The supervising
JobScheduler then provides the Workload JobSchedulers with the configuration information for these objects. In
addition to the configurations provided by the Supervisor, Workload JobSchedulers can read local configuration
information from their own hot folders (page 88) (. /config/1ive) and from their own . /config/scheduler. xml
configuration file.

1.3.1 A Typical Configuration

A Supervisor JobScheduler with a. /config/remote directory. In this directory is an a11 folder, containing all the
general configuration objects for all the Workload JobSchedulers. Each Workload JobScheduler has a
corresponding directory (. /config/cache) containing the configuration information for objects being replicated
using the information from the Supervisor.

Supervisor
config/remot
_all Host & Host B Cluster C
']
Host A Host B |
configicache configicache | |

Cluster C

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 93

1.3.2 The Supervisor JobScheduler

The Supervisor JobScheduler administers the configurations of the Workload JobSchedulers in its
./config/remote directory. The Supervisor sends these configuration files to the relevant Workload
JobSchedulers which are running. It sends the configuration information on starting, when a Workload
JobScheduler registers itself with the Supervisor and after changes have been made to the configuration files. The
Workload JobSchedulers replicate this configuration information in their . /config/cache directories, which they
monitor for changes. The Workload JobSchedulers use this configuration information to configure jobs, job chains,
etc. (see also hot folders (page 88)).

In the Supervising JobScheduler's . /config/remote configuration directory a sub-directory is created for each

Workload JobScheduler under the name of host#port. The Supervisor's. /config/remote directory also contains

an additional sub-directory for every JobScheduler Cluster it administers (see Backup Clusters (page 145) and Load
Balancing (page 170)). This sub-directory contains the scheduler 1D which has been allocated to the cluster. The
directory structure relevant to each Workload JobScheduler or JobScheduler Cluster is replicated on the Workload

JobScheduler or on the cluster.

In addition, the directory structure in the a11 folder, is replicated on all the Workload JobSchedulers. This means
that it is possible for definitions of all the objects which are valid for all the Workload JobSchedulers to be
administered at a central place.

Should the supervising JobScheduler fail, then the Workload JobScheduler which was last successfully updated
with the replicated configuration data can simply be started as usual.

1.3.3 Registering a JobScheduler with the Supervisor JobScheduler
A Workload JobScheduler registers itself with the Supervisor JobScheduler using the <config supervisor="..">

attribute in the config element as defined in its configuration file . /config/scheduler. xml. This attribute defines
the host and port of the supervising JobScheduler by the syntax host: port.

Should the Supervisor JobScheduler not be available, then the Workload JobScheduler starts using its last
successfully replicated configuration.

1.3.4 Effectiveness of Local Changes to the Configuration

Local configurations can be created in addition to those provided by the Supervisor JobScheduler.

The Workload JobScheduler's . /config/scheduler. xml configuration file is used to define local object
configurations. The hot folders (page 88) in the . /config/live directory can also be used to define local object
configurations.

The configuration centrally stored on the Supervisor JobScheduler and successfully replicated has priority over any
local configurations. In the event of local and central configurations having the same name, then the central one will
be given priority. When an element in the central configuration is added to a local configuration, then the Workload
JobScheduler will become aware of this and reject the local element. An appropriate warning will then be added to
the Workload JobScheduler's log file.

When an object that already exists in a local configuration, is added to the configuration of the Supervisor
JobScheduler, the local configuration will be overwritten. The local configuration will be retained but no longer used
and a warning added to the Workload JobScheduler's log file as described above.

When an object that exists in a both a local and a central configuration is deleted from the central configuration,
then it will also be deleted from the local Workload JobScheduler configuration.

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 94

What exactly happens to the local configuration on the Workload JobScheduler configuration depends on how the
duplicated job is configured on the Workload JobScheduler:

a) If a job is locally configured in hot folders (page 88) in. /config/1ive: The local configuration will be used
b) If a job is configured in the . /config/scheduler. xml file: The configuration will be read when the JobScheduler
is next started.

1.3.5 Taking Over an Existing Configuration in the Central Administration

The following steps should be followed, when an existing, locally administered JobScheduler is to be included in
the central administration of a Supervisor JobScheduler:

. A folder for the Workload JobScheduler should be created on the Supervisor (. /config/remote/host#port).

. A. /config/cache folder should be created on the Workload JobScheduler.

. The content of the Workload JobSchedulers' . /config/1ive hot folder (page 88) should be copied to the
. /config/remote/host#port on the Supervisor JobScheduler.

. Configure the registration of the Workload JobScheduler on the Supervisor. To do this, the <config
supervisor=".">_entry should be added to the Workload JobScheduler's . /config/scheduler. xml
configuration file.

1.3.6 Behaviour of the JobSchedulers on Starting

1.3.6.1 Workload JobSchedulers

The Workload JobScheduler registers itself with the Supervisor and orders the configuration. Operation can begin
after the configuration has been replicated. Should the supervising JobScheduler not be available, then the
Workload JobScheduler uses its existing configuration - to be more exact, it uses the last successfully replicated
profile. Should replication later become possible, then it will be carried out automatically. Any changes made in the
central configuration will immediately become effective.

1.3.6.2 Supervisor JobScheduler

The supervising JobScheduler replicates the Workload JobScheduler's configurations when it starts.

1.4 factory.ini File

The factory.ini file contains settings for the JobScheduler. Note that empty settings are ignored and do not overwrite
those made in the (page 6).

The location of this file can be specified when starting the JobScheduler using the -ini_option. For example,

..scheduler installation path.\bin\scheduler. exe
-ini=C: /Programme/scheduler/config/factory. ini

During installation of the JobScheduler, the factory.ini file is saved in the

..scheduler installation path.\config
directory. Calls using the JobScheduler start script then automatically set the path to this file correctly.

If the path to the factory.ini file is not specified when calling the JobScheduler, then the JobScheduler will attempt to
find it by looking according to the following criteria:

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 95

This file should be saved under Windows in the folder in which Windows expects to find the .ini files. Normally this
is the c:\windows folder. Otherwise the file will be sought in the users' home directory.

Settings

Section: java

class_path = class_path Class path for the Java virtual machine

This file is used to extend the c1ass path of directories or jars which are only valid for the JobScheduler.
options = text Options for Java

Java VM parameters and Java properties can be specified using this setting. Java properties can be specified
using the "-D" notation. For example:

options = -Dlog4j.configuration="file:///${SCHEDULER HOME}/1lib/log4j. properties"
See the Java Documentation for a list of parameters.

This setting precedes changes in the sos. ini (section[java] , entry options= ..)file.

Section: job
history = yes|no Write history?

Specifies whether a task history should be written. If yes, then the JobScheduler makes an entry in the database
for every task carried out. Should the JobScheduler not be using a database, this entry will be made in a file
specified in the -10g-dir_directory.

The_factory. ini _(section[spooler] , entry history= yes) setting is overwritten by this parameter.

history_archive = yes|no|gzip Archive history files?

This option causes the JobScheduler to archive and compress the history files with gzip after its last run, should
the JobScheduler be writing the history in files and not in a database.

The_factory. ini _(section[spooler], entry history archive= no) setting is overwritten by this parameter.

history_columns = name, name, ... Additional columns in the history

A task using the Task. set history field() _method can include fields specified here in the database table.

The_factory. ini _(section [spooler], entry history columns= ..) setting is overwritten by this parameter.

history_file = file_name Name of the History File (for operation without a database)
(Since version 1.5, file based history are not longer written.)

The_factory. ini _(section| spooler], entry history file= ..) setting is overwritten by this parameter.

history_on_process = yes|no|number Write history entry after calling spooler_process()?

Should the Job JobScheduler be writing a history, then the settings history on process=no or =0 cause it to
make an entry in the history at the start of a task.

When history on process=yes or =1 then JobScheduler only makes an entry after spooler process()_has
been called. This means that no entry will be made, when spooler open() returns false.

When a number is specified in this setting (history on process=x), the JobScheduler makes an entry in the
history only after the x-th execution of spooler process() _.

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler 96

The factory. ini _(section[spooler], entry history on process= 0) setting is overwritten by this parameter.

Messages

[ERROR] SCHEDULER-335 Only "yes", "no" and a number are allowed with ="": error

history_with_log = yes|no|gzip Write a protocol in the history?

The JobScheduler can add the task protocol to the history when the history is being recorded in a database, if
required, compressed with gzip. (Here it is important to check that the protocol - which is saved in binary format -

can be decompressed after being saved in the database.)

See the command: <show task what="1og"> (page 211).

The factory. ini _(section[spooler], entry history with log= no) setting is overwritten by this parameter.

log_level =Jog_level Limit protocol level

Defines the level with which protocol entries should be written. Every protocol entry is given one of the following
categories: error, warn, info, debugl t0 debug9 (debugl is the same as debug).

The -1o0g-1evel option has precedence over this parameter.

The_factory. ini _(section[spooler], entry 1og level= info) setting is overwritten by this parameter.

log _mail bcc = email_address E-mail bce recipient

The_factory. ini (section[spooler], entry 1og mail bcc= ..) setting is overwritten by this parameter.

log_mail_cc = email_address E-mail cc recipient

The factory. ini _(section[spooler], entry log mail cc= ..) setting is overwritten by this parameter.

log_mail from = email_address E-mail sender

The factory. ini _(section[spooler], entrylog mail from= ..) setting is overwritten by this parameter.

log_mail subject = fext E-mail subject

The_factory. ini _(section| spooler], entry log mail subject= ..) setting is overwritten by this parameter.

log_mail_ to = email_address E-mail recipient

The_factory. ini _(section[spooler], entry 1og mail to= ..) setting is overwritten by this parameter.

mail on_delay_ after_error = Suppress <delay_after_error>
Prerequisite: mail on error=yes Ormail on warning=yes

This setting reduces the numerous e-mails after a job is restarted by way of <delay after error>..

This setting only works when <delay after error>_has been set for as job. Should this not be the case, then
mail on delay after error=all applies.

The_factory. ini_(section| spooler], entry mail on delay after error= first and last only) setting is
overwritten by this parameter.

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 97

mail on_error = yes|no Send an e-mail should a task end with an error

The_factory. ini _(section[spooler],entrymail on error= no) setting is overwritten by this parameter.

mail on_process = yes|nolnumber Send an e-mail at the start of a task using spooler_process()

Causes the task log to be sent when a task has completed at least the specified number of steps - i.e. calls of
spooler process() _. Because non-API tasks do not have steps, the JobScheduler counts each task as a single
step.

yes corresponds to 1, no corresponds to 0.

The_factory. ini (section[spooler],entrymail on process= 0) setting is overwritten by this parameter.

mail_on_success = yes|no Send an e-mail on successful completion of a task

The factory. ini _(section[spooler], entrymail on success= no) setting is overwritten by this parameter.

mail queue_dir = directory Directory for e-mails which temporarily cannot be sent

E-mails which cannot be sent (because, for example, the SMTP server cannot be contacted) are stored in this
directory.

In order to send these e-mails later it is necessary to write a job which calls up the Mail. dequeue() method.

This setting is generally made in sos. ini (section[mail], entry queue dir= ..).

Environment variables (e.g. su0ME) are replaced by this attribute (see Settings which Allow Environment Variables
to be Called (page 106)).

The_factory. ini _(section[spooler], entry mail gqueue dir= ..) setting is overwritten by this parameter.

Thesos. ini (section[mail], entry queue dir= ..) setting is overwritten by this parameter.

smtp = host_address E-mail SMPT server hostname or IP number

These settings are generally made using sos. ini_(section[mail], entry smtp= ..).

smtp=-queue stops e-mails being sent. Instead mails are written into the file specified in queue dir. See also
sos. ini (section[mail]l, entry queue only= ..).

The_factory. ini _(section[spooler], entry smtp=_..) setting is overwritten by this parameter.

Thesos. ini _(section[mail], entry smtp= ..) setting is overwritten by this parameter.

Section: smtp

mail. smtp. password = password Password for Authentification on an SMTP Server

The password is sent together with the mail. smtp. user entry when registering on an SMTP server in order to be
able to send e-mails.

mail. smtp. user = name Name for Authentification on an SMTP Server

Section: spooler

config = file_name Configuration file

Defines the Configuration File (page 6).

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler 98

The -config_ option has precedence over this parameter.

db = connection_string Database connection string

The database connection string for the history. Should no value be specified here, then the files will be saved in
.csv format. See factory. ini (section[spooler], entry history file= ..) (page 99).

A simple file name ending in . mdb (€.g. scheduler. mdb) can also be specified here when the JobScheduler is
running on Windows. The JobScheduler then uses a Microsoft MS Access database of this name, which is located
in the protocol directory (see the option -10g-dir_). Should such a database not exist, then the JobScheduler will
create this database.

The JobScheduler automatically creates the tables necessary for this database.

Example:

g SQL Server 2000 via msbase. jar, msutil. jar, mssglserver. jar

db = jdbc -class=com. microsoft. jdbc. sglserver. SQLServerDriver

jdbc: microsoft: sglserver: //localhost: 1433; selectMethod=Cursor; databaseName=scheduler
—user=scheduler -password=secret

g SQL Server 2000, 2005 via sgljdbc. jar

db = jdbc -class=com. microsoft. sglserver. jdbc. SQLServerDriver

jdbc: sglserver: //localhost: 1433; sendStringParametersAsUnicode=false; selectMethod=cursor
; databaseName=scheduler -user=scheduler -password=secret

; MySQL 4.1.7, 5.x
db = jdbc -class=com mysqgl. jdbc. Driver jdbc: mysqgl://localhost/scheduler: 3306
—user=scheduler -password=secret

8 Oracle 8.1.7, 9i, 10g
db = jdbc -class=oracle. jdbc. driver. OracleDriver jdbc: oracle: thin: @localhost: 1521: orcl
—user=scheduler -password=secret

; PostgreSQL 8. x
db = jdbc -class=org. postgresqgl. Driver jdbc: postgresqgl: //localhost: 5432/scheduler
—user=scheduler -password=secret

g IBM DB2 8

db = jdbc -class=com. ibm. db2. jcc. DB2Driver

jdbc: db2: //localhost: 50000/scheduler: driverType=2; retrieveMessagesFromServerOnGetMessag
e=true; -user=scheduler -password=secret

; Firebird 1.5
db = jdbc -class=org. firebirdsqgl. jdbc. FBDriver
jdbc: firebirdsqgl: //localhost: 3050/scheduler -user=scheduler -password=secret

; ODBC
db = odbc -db=scheduler datasource -user=scheduler -password=secret

g MS Access Datenbank
db = scheduler. mdb

db_check_integrity = yes|no
The JobScheduler carries out additional database integrity tests.

db_history_table = name Name of the history database table

See also Spooler.db history table name()

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler 99

db _members table =

db_order_history_table = name Name of the order history database table

See also Spooler.db order history table name()

db_order_step_history_table = name Name of the database table containing the steps in the order history

db_orders_table = name Name of the order database table

See also Spooler. db orders table name()

db_tasks_table = name Name of the task database table

See also Spooler. db tasks table name()

db_variables_table = name Name of the JobScheduler internal variable database table
The JobScheduler records internal counters, for example, the ID of the next free task, in this database table.

See also Spooler.db variables table name()

history = yes|no Write history?

Specifies whether a task history should be written. If yes, then the JobScheduler makes an entry in the database
for every task carried out. Should the JobScheduler not be using a database, this entry will be made in a file
specified in the -10g-dir_directory.

The factory. ini_(section[job] , entry history= yes) setting has precedence over this parameter.

history_archive = yes|no|gzip Archive history files?

This option causes the JobScheduler to archive and compress the history files with gzip after its last run, should
the JobScheduler be writing the history in files and not in a database.

The_factory. ini (section[job] , entry history archive= no) setting has precedence over this parameter.

history_columns = name, name, ... Additional columns in the history

A task using the Task. set _history field() method can include fields specified here in the database table.

The_factory. ini _(section[job] , entry history columns= ..) setting has precedence over this parameter.

history_ file = file_name Name of the History File (for operation without a database)
(Since version 1.5, file based history are not longer written.)

The_factory. ini (section[job] , entry history file= ..) setting has precedence over this parameter.

history on_process = yes|no|number Write history entry after calling spooler_process()?

Should the Job JobScheduler be writing a history, then the settings history on process=no or =0 cause it to
make an entry in the history at the start of a task.

When history on process=yes or =1 then JobScheduler only makes an entry after spooler process()_has
been called. This means that no entry will be made, when spooler open() returns false.

When a number is specified in this setting (history on process=x), the JobScheduler makes an entry in the
history only after the x-th execution of spooler process() _.

The factory. ini _(section[job] , entry history on process= 0) setting has precedence over this parameter.

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler 100

Messages

[ERROR] SCHEDULER-335 Only "yes", "no" and a number are allowed with ="": error
history_with_log = yes|no|gzip Write a protocol in the history?

The JobScheduler can add the task protocol to the history when the history is being recorded in a database, if
required, compressed with gzip. (Here it is important to check that the protocol - which is saved in binary format -
can be decompressed after being saved in the database.)

See the command: <show task what="1og">_(page 211).

The factory. ini _(section[job] , entry history with log= no) setting has precedence over this parameter.

html_dir = directory Directory for HTML files

The directory in which the HTML files for the JobScheduler HTTP server are to be found.

Should no entry be made here, then the JobScheduler uses the htm1 directory in the configuration file directory.
id = scheduler_id JobScheduler identifier (id)

The JobScheduler only selects elements in the XML configuration whose spooler id attributes are either empty or
set to the value given here.

When the JobScheduler ID is not specified here, then the JobScheduler ignores the spooler id= XML attribute
and selects all the elements in the XML configuration.

See, for example, <config> (page 21).

The -id_option has precedence over this parameter.

include_path = directory Directory path for <include>
The directory of the files which are to be included by the <include>_element.

Environment variables (e.g. sHOME) are replaced by this attribute (see Settings which Allow Environment Variables
to be Called (page 106)).

The -include-path_option has precedence over this parameter.

<config include path="..">_is overwritten by this parameter.

log = file_name scheduler.log file name

This setting causes the JobScheduler to write a detailed protocol. This protocol is intended for use in problem
diagnosis. The file name should be fully specified here (i.e. as a full path).

A plus character (+) written directly before the file name causes an already existing protocol to be continued.
Otherwise such a protocol will be overwritten.

Categories can be used to extend or restrict the log file. Category names are added (separated by spaces) before
the file name, which is then preceded by a larger than (>) sign.

The list of categories can be found here.

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 101

Example:

log = c:/tmp/scheduler. log
log = scheduler. wait >scheduler. log
log scheduler. wait com server.* >scheduler. log

The -10g_option has precedence over this parameter.

log_dir = directory Protocol directory
The directory in which the JobScheduler writes log files.
log dir=*stderr allows the JobScheduler to write log files to the standard output (stderr, normally the screen) .

The -10g-dir_option has precedence over this parameter.

log_level =Jog_level Limit protocol level

Defines the level with which protocol entries should be written. Every protocol entry is given one of the following
categories: error, warn, info, debugl t0o debug9 (debugl is the same as debug).

The -10g-1evel option has precedence over this parameter.

The_factory. ini _(section[job] , entry 1og level= info) setting has precedence over this parameter.

log mail becc = email_address E-mail bce recipient

The_factory. ini _(section] job] , entry 1og mail bcc= ..) setting has precedence over this parameter.

log_mail cc = email_address E-mail cc recipient

The factory. ini (section[job], entry 1og mail cc= ..) setting has precedence over this parameter.

log_mail from = email_address E-mail sender

The factory. ini_(section[job] , entry 1og mail from= ..) setting has precedence over this parameter.

log_mail subject = fext E-mail subject

The factory. ini _(section[job] ,entry 1og mail subject= ..) setting has precedence over this parameter.

log_mail_ to = email_address E-mail recipient

The_factory. ini _(section[job] , entry 1og mail to= ..) setting has precedence over this parameter.

mail_encoding =
mail on_delay_ after_error = Suppress <delay_after_error>
Prerequisite: mail on error=yes Ormail on warning=yes

This setting reduces the numerous e-mails after a job is restarted by way of <delay after error>_.

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 102

This setting only works when <delay after error>_has been set for as job. Should this not be the case, then
mail on delay after error=all applies.

The_factory. ini_(section[jobl, entry mail on delay after error= first and last only) setting has
precedence over this parameter.

mail_on_error = yes|no Send an e-mail should a task end with an error

The factory. ini _(section[job],entrymail on error= no) setting has precedence over this parameter.

mail_on_process = yes|nolnumber Send an e-mail at the start of a task using spooler_process()

Causes the task log to be sent when a task has completed at least the specified number of steps - i.e. calls of
spooler process() _. Because non-API tasks do not have steps, the JobScheduler counts each task as a single
step.

yes corresponds to 1, no corresponds to 0.

The_factory. ini (section[job] , entry mail on process= 0) setting has precedence over this parameter.

mail_on_success = yes|no Send an e-mail on successful completion of a task

The_factory. ini (section[job] , entrymail on success= no) setting has precedence over this parameter.

mail on_warning = yes|no An e-mail is sent after a task has ended, should a warning occur

mail queue_dir = directory Directory for e-mails which temporarily cannot be sent

E-mails which cannot be sent (because, for example, the SMTP server cannot be contacted) are stored in this
directory.

In order to send these e-mails later it is necessary to write a job which calls up the Mail. dequeue() method.

This setting is generally made in sos. ini (section| mail], entry queue dir= ..).

Environment variables (e.g. sH0ME) are replaced by this attribute (see Settings which Allow Environment Variables
to be Called (page 106)).

The_factory. ini _(section] job] , entry mail queue dir= ..) setting has precedence over this parameter.

Thesos. ini _(section[mail], entry queue dir= ..) setting is overwritten by this parameter.

mail queue_only = yes|no Do not send e-mail, add it to the e-mail queue

When this parameter is set to yes, then e-mails are sot sent but added to the e-mail queue - see sos. ini_(section
[mail] . entry queue dir= ..).

This setting is generally made in sos. ini (section[mail], entry queue only= ..).

Thesos. ini _(section[mail], entry queue only= ..) setting is overwritten by this parameter.

max_db_errors = number Number of database errors before the JobScheduler shuts itself down

The JobScheduler accepts this number of database errors. In the event of this number of errors being exceeded,
and the option need db=yes, then the JobScheduler shuts itself down immediately. Should need db=no then the
JobScheduler will continue without the database.

In the case of need db= yes, then the errors occurring when attempting to open a database will not be not counted.
This means that the JobScheduler can wait for a database which has not yet been opened.

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler 103

need_db = yes|no|strict Is a database necessary?

need_db=no

Should the option db= not have been set, then the JobScheduler issues a warning and operates without a
database.

The JobScheduler also issues a warning and operates without a database, should either the opening of a
database or the automatic creation of the necessary tables not be successful.

In the event of a database error when the JobScheduler is in operation, the JobScheduler closes and
reopens the database. Should the JobScheduler be unsuccessful in either of these operations, then it will
operate without the database.

In Cluster operation (-exclusive Or -distributed-orders_) the JobScheduler rejects need db=no with the
following message:

SCHEDUL
ER-358

need_db=yes

In this case, in the event of the db= setting not being specified, then the JobScheduler will not start but return
the following message, .

The JobScheduler will not start should either the opening of the database or the automatic creation of tables
not function successfully.

The JobScheduler attempts to close and then reopen the database should a database error occur whilst it is
in operation. Should the JobScheduler not be successful in these operations, then it will reattempt to open
the database at one minute intervals. It will continue with these attempts to reopen the database indefinitely.
The JobScheduler will not attempt to manage any tasks until it regains contact with the database.

The JobScheduler sends an E-mail (page 175) should repeated attempts to reopen the database be
unsuccessful.

need_db=strict

As need_db=yes with the following exceptions:

Should a database error occur whilst the JobScheduler is in operation, then it attempts to close and then
reopen the database. Should an error repeat itself then the JobScheduler will repeat this process for the
number of times specified in the max_db_errors= setting. Should the JobScheduler not be successful
reopening the database, then it will shut itself down.

order_history = yes_no Write orders in the history?
A separate history is recorded for orders.
order_history with_log = yes|no|gzip Record the order log in the history?

The JobScheduler can record the order log in the database - compressed with gzip if required. (Here it is important
to check that the log - which is saved in binary format - can be decompressed after being saved in the database.)

See the command: <show order what="1og"> (page 209).

param = fext For free use

Free text. This parameter can be read using spooler. param.

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 104

The -param_option has precedence over this parameter.

smtp = host_address E-mail SMPT server hostname or IP number

These settings are generally made using sos. ini _(section[mail], entry smtp= ..).

smtp=-queue Stops e-mails being sent. Instead mails are written into the file specified in queue dir. See also
sos. ini_(section[mail], entry queue only= ..).

The factory. ini_(section[job] , entry smtp= ..) setting has precedence over this parameter.

Thesos. ini (section[mail], entry smtp= ..) setting is overwritten by this parameter.

subprocess. own_process_group = yes|no Start a Sub-Process in its own Group

This is the default setting for subprocess. own process group

1.5 sos.ini

The SOS licence keys are written in the sos. ini file.

Further, general settings for Java or e-mail are made here. Java settings can also be made in the factory. ini file,
in the [java] (page 97) section.

When calling the JobScheduler from the command line, the path to the file can be specified using the -sos. ini
option. For example,

..scheduler installation path.\bin\scheduler. exe
-so0s. 1ini=C: /Programme/scheduler/config/sos. ini

During installation of the JobScheduler, the sos. ini file is written to the

..scheduler installation path.\config
directory. Calls using the JobScheduler start script automatically set this path corrrecily.

Should settings in the sos. ini file also be used in other products from the SOS GmbH., then this file can be saved
centrally.

Should the sos. ini file not be specified when starting the JobScheduler, then the JobScheduler will attempt to find
it by looking according to the following criteria:

This file should be saved under Windows in the folder in which Windows expects to find the .ini files. Normally this
is the c:\windows folder. Otherwise the file will be sought in the users' home directory.

Settings
Section: java
class_path =
debug = yes _no

debug=yes causes the Java call to be entered in the scheduler. 10og file. This setting also sets Java in the debug
mode, whereby, for example, an exception causes the call stack to be written to stdout (or stderr).

javac = path Path to the Java compiler

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler 105

This setting is used to specify the path to the Java compiler. The JobScheduler uses this compiler when quell code
is directly written in the <script>_element, for example, when developing Java jobs

options = fext

Java VM parameters and Java properties can be specified using this setting. Java properties can be specified
using the "-D" notation.

For example:

options = -Dlog4j.configuration="file:///${SCHEDULER HOME}/lib/log4j. properties"
See the Java Documentation for a list of parameters.

This setting precedes changes in the sos. ini (section[java] , entry options=_..) file.

vm = file_name Java Virtual Machine File Name
The default settings are jvm. d11 for Windows, §vm. s1 for HP-UX and jvm. so for all other UNIX variants.

The Windows preset value is read out of the registry. The currentversion entry, which contains the current
version number (such as "1. 5"), is read from the

HKEY LOCAL MACHINE\software\JavaSoft\Java Runtime Environment
key. The version key - e.g.:

HKEY LOCAL MACHINE\software\JavaSoft\Java Runtime Environment\1l.5
is then read and the path to the jvm. d11 file taken from the RuntimeLib entry.

Section: licence

keyl = licence_key Licence Key

Users with more than one licence key can enter subsequent keys using key2=, key3= etc.. Note that the numbering
must be without spaces.

Section: mail
queue_dir = directory Directory for e-mails which temporarily cannot be sent

E-mails which cannot be sent (because, for example, the SMTP server cannot be contacted) are stored in this
directory.

In order to send these e-mails later it is necessary to write a job which calls up the Mail. dequeue() _method.

This setting is generally made in sos. ini (section[mail], entry queue dir= ..).

Environment variables (e.g. su0ME) are replaced by this attribute (see Settings which Allow Environment Variables
to be Called (page 106)).

The_factory. ini _(section[job] , entry mail gqueue dir= ..) setting has precedence over this parameter.

The factory. ini _(section[spooler], entry mail gqueue dir= ..) setting has precedence over this parameter.

queue_only = yes|no Do not send e-mail, add it to the e-mail queue

When this parameter is set to yes, then e-mails are sot sent but added to the e-mail queue - see sos. ini _(section
[mail] , entry queue dir= ..).

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler 106

This setting is generally made in sos. ini (section[mail], entry queue only= ..).

The_factory. ini _(section[spooler], entry mail gqueue only= ..) setting has precedence over this parameter.

smtp = host_address E-mail SMPT server hostname or IP number

These settings are generally made using sos. ini _(section| mail], entry smtp= ..).

smtp=-queue Stops e-mails being sent. Instead mails are written into the file specified in queue dir. See also
sos. ini (section[mail], entry queue only= ..).

The factory. ini_(section[job] , entry smtp= ...) setting has precedence over this parameter.

The factory. ini (section[spooler], entry smtp= ..) setting has precedence over this parameter.

1.6 Settings which Allow Environment Variables with ${...} to be Called

Environment variables with the syntax ${ name} can be called in some XML attributes and . ini file settings. The
$ name is also possible when a special character (apart from the understroke) follows the variable name.

The »$ « character remains, when no »{ « or letter follows the name. Similiarly, »\ $ « returns »$ « when prefixed with
»\ «.

The values of the environment variables as the JobScheduler started remain valid.

Variables can also be replaced by programs using the variable set. substitute() _method.

Example:

File factory. ini
[Javal
class path = ${SCHEDULER HOME} /lib/sos. spooler. jar

class path = $SCHEDULER HOME/lib/sos. spooler. jar
class path = \\otherhost\C$\lib\classes. jar
<params>

<param name="txt file regex" wvalue="\.txts$"/>
</params>

1.6.1 XML Attributes

<base file="."> Basic Configuration

<config include path="."> Configuration, Directory path for <include>

<file order sink move to="."> File Order Sink

<file order source directory=".."> File Order Source

<http directory path=".."> HTTP File Directory, File system path

<include file=".."> Includes text from a file, Path to file to be included

<include live file=".."> Includes text from a file, Path to the file to be added
from the configuration directory

<param value="."> Individual Parameters

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler 107

<start when directory changed directory=".."> Directory Monitoring

<web service url path="."> Web Service, The URL path used to reach a service

<web service request xslt stylesheet="."> Web Service, Transforms a request into a JobScheduler
command

<web service response xslt stylesheet="."> Web Service, Transforms a reply to a command into a

Web Service response

<web_service forward xslt stylesheet="."> Web Service, Forwarding after an order or task has
been completed

1.6.2 Files factory.ini

[spooler] factory. ini (section] spooler] ., entry Directory path for <include>
include path= ..)

[spooler] factory.ini (section[spooler], entry Directory for e-mails which temporarily cannot be sent
mail queue dir= ..)

[job] factory.ini_(section[job], entry Directory for e-mails which temporarily cannot be sent
mail queue dir= ..)

1.6.3 Files sos.ini

[mail] sos.ini (section[mail], entry queue dir= ..) | Directory for e-mails which temporarily cannot be sent

1.7 Command Line Operation

The JobScheduler is started using a straightforward command.

C:\>..scheduler installation path.\bin\scheduler. exe .\my scheduler configuration. xml

user@host: ~>..installation path../bin/scheduler ../my scheduler configuration.xml ..

Parameters for the command line operations described here and which are written to the right of the "=" can be set
in inverted commas (") or in apostrophes / single quotes (").

The JobScheduler installation program creates the start script - either . \bin\jobscheduler. cmd (Windows) or
. /bin/jobscheduler. sh (Unix), in which command line options and environment variables are already set. This
script can be modified as required.

Note that the start script and environment variables are described in the »Installation and Configuration« handbook.

The command line can be used in the following ways:

. Starting the JobScheduler

. Installation of a Windows Service

. Forwarding a Job to a JobScheduler

. Forwarding an Order to a Running JobScheduler

. Sending an XML Command to a Running JobScheduler
. Stopping a JobScheduler with kill'

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 108

. Expand the Java Class Path
. Show Version Number

Starting the JobScheduler
scheduler

-config=file_name Configuration file

-log=file_name scheduler.log file name

-1log-dir =directory Protocol directory

-id=scheduler_id JobScheduler identifier (id)

-cd=directory Working Directory

-pid-file=File Name File name for process ID

-log-level=log_level (Initial value: info) Limit protocol level

-param=text For free use

-include-path=directory Directory path for <include>

-port=number (Initial value: 0) HTTP, TCP and UDP ports for control
commands for the JobScheduler

-tcp-port=number (Initial value: 0) Port for HTTP and TCP commands for
the JobScheduler

-time-zone=text JobScheduler time zone

-udp-port=number (Initial value: 0) Port for UDP commands for the
JobScheduler

-ip-address=ip_number (Initial value: 0.0.0.0) The interface IP address for TCP
and UDP

-reuse-port Reuse of the TCP and UDP ports

-cmd =xmlcommand Immediately executed commands

-1ini =file name Alternative factory.ini file

-sos. ini =file name Alternative sos.ini file

-program-file=file name JobScheduler file name

-service Start as a daemon

-validate-xml Validate XML Ddocuments against an embedded schema

-use-xml -schema =dateiname Schema for validating the JobScheduler configuration

-env=name=value Set Environment Variables

-exclusive Starts the JobScheduler for Exclusive Service

-backup Starts a JobScheduler as a Backup Scheduler

-backup-precedence =integer (Initial value: 1) Priority Amongst Backup JobSchedulers

-distributed-orders Distributed Orders

-configuration-directory Configuration directory

-java-classpath=file_names Java class path for JobScheduler process

-java_options=text Java options for JobScheduler process

-job-java-classpath=file_names Java class path for Jobs

-job _java options=text Java options for Jobs

The scheduler file name must be completely and absolutely specified and be given an ". exe" ending on Windows
systems. This is because the JobScheduler requires the complete file name in order to be able to start either a job
or itself.

Example:

c: \bin\scheduler. exe c: \scheduler\config. xml -log-dir=c: \scheduler\logs

Installation of a Windows Service

scheduler

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 109

-install-service=name Install as a Windows service

-remove-service=name Remove a Windows service

-service-name=name (Initial value: sos_scheduler) Windows service internal
name

-service-display=text Windows service name

-service-descr =text Windows service description

-need-service=name Service required by the JobScheduler (Windows only)

Forwarding a Job to a JobScheduler

scheduler
-scheduler=host.port The JobScheduler TCP address
-log=file_name scheduler.log file name
-process-class=name
-language=script_language (Initial value: shell) The Job Script language
-at=yyyy-mm-dd HH:MM (Initial value: now) Start time

A temporary job is forwarded to the target JobScheduler, which is addressed using -scheduler =host: port .

This job only exists until the JobScheduler is restarted.

Example:

echo 1s -1 | scheduler -scheduler=localhost: 4444 -at="2006-04-04 12:00"

Forwarding an Order to a Running JobScheduler

scheduler
-scheduler
-log
-job-chain=name Job Chain
-order-id=id The Order ID
-title=text The Order Title

-scheduler =host: port_is used to define the JobScheduler which an order is forwarded to.

The order parameters (see order. payload_) can be forwarded to the command line in the form:name = value.

Example:

scheduler -scheduler=localhost: 4444 -job-chain=my job chain -order-id=123 city=Berlin
phone="+4930 864790-0"

Sending an XML Command to a Running JobScheduler

scheduler
-tcp-port
-send-cmd=xmlcommand Sending a command to another JobScheduler

Stopping a JobScheduler with "kill’

scheduler

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler 110

-kill Stopping a Running JobScheduler using kill’
-kill=pid Stopping a Running JobScheduler with 'kill'
-pid-file=dateiname

Example:

scheduler -kill -pid-file=/home/scheduler/scheduler. pid

Expand the Java Class Path

scheduler
-expand-classpath Expand the Java Class Path

Show Version Number

scheduler
Y Show Version Number

Options

-config=file_name Configuration file

Defines the Configuration File (page 6).

The "-config=" prefix before file names can be omitted.

This option specifies the configuration file or configuration directory. Should a configuration directory be
specified, then the JobScheduler will expect to find the configuration file in the configuration directory, under
the name scheduler. xml.

The_factory. ini _(section[spooler], entry config= ..) setting is overwritten by this parameter.

-log=file_name scheduler.log file name

This setting causes the JobScheduler to write a detailed protocol. This protocol is intended for use in problem
diagnosis. The file name should be fully specified here (i.e. as a full path).

A plus character (+) written directly before the file name causes an already existing protocol to be continued.
Otherwise such a protocol will be overwritten.

Categories can be used to extend or restrict the log file. Category names are added (separated by spaces)
before the file name, which is then preceded by a larger than (>) sign.

The list of categories can be found here.

Example:

log = c:/tmp/scheduler. log
log scheduler. wait >scheduler. log
log scheduler. wait com server.* >scheduler. log

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 111

The_factory. ini _(section[spooler], entry 1og= ..) setting is overwritten by this parameter.

-log-dir=directory Protocol directory
The directory in which the JobScheduler writes log files.

log _dir= *stderr allows the JobScheduler to write log files to the standard output (stderr, normally the
screen) .

The factory. ini _(section[spooler], entry 1og dir= ..) setting is overwritten by this parameter.
-id=scheduler_id JobScheduler identifier (id)

The JobScheduler only selects elements in the XML configuration whose spooler id attributes are either
empty or set to the value given here.

When the JobScheduler ID is not specified here, then the JobScheduler ignores the spooler id= XML
attribute and selects all the elements in the XML configuration.

See, for example, <config> (page 21).

The_factory. ini _(section[spooler] , entry id= ..) setting is overwritten by this parameter.

-cd=directory Working Directory

Changes the Working Directory.
-pid-£file=File Name File name for process ID

On Unix systems: the JobScheduler writes its process ID (PID) in this file. This file is deleted by the
JobScheduler on stopping.

-log-level=log level (Initial value: info) Limit protocol level

Defines the level with which protocol entries should be written. Every protocol entry is given one of the
following categories: error, warn, info, debugl t0 debug9 (debugl is the same as debug).

The_factory. ini _(section[job] , entry 1og level= info) setting is overwritten by this parameter.

The_factory. ini _(section[spooler], entry 1og level= info) setting is overwritten by this parameter.

-param=text For free use
Free text. This parameter can be read using spooler. param.

The_factory. ini_(section[spooler] , entry param= ..) setting is overwritten by this parameter.

-include-path=directory Directory path for <include>
The directory of the files which are to be included by the <include>_element.

Environment variables (e.g. $HOME) are replaced by this attribute (see Settings which Allow Environment
Variables to be Called (page 106)).

The factory. ini _(section[spooler], entry include path= ..) setting is overwritten by this parameter.

<config include path=".."> is overwritten by this parameter.

-port=number (Initial value: 0) HTTP, TCP and UDP ports for control commands for the JobScheduler
Combines the tcp port and udp port settings.

See also -tcp-port_and -udp-port _.

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 112

Note that if a port is blocked, the JobScheduler will attempt to access it for two minutes before terminating
itself.

<config port="..">_is overwritten by this parameter.

-tep-port=number (Initial value: 0) Port for HTTP and TCP commands for the JobScheduler

The JobScheduler can accept commands via a TCP port whilst it is running. The number of this port is set here
- depending on the operating system - with a number between 2048 and 65535. The default value is 4444.

The JobScheduler operates a HTTP/HTML server on the same port, enabling it to be reached using a web
browser - e.g. via http://localhost:4444.

The JobScheduler does not respond to the tcp port=0 default setting either with TCP or HTTP protocols. This
setting can therefore be used to block a JobScheduler from being accessed - for example via TCP.

See also -port .

<config tcp port=".."> is overwritten by this parameter.

-time-zone=text JobScheduler time zone

Specifies the time zone in which a job or order is to start. Time zones are to be specified as defined in the tz
database. A List of time zones is available in the Joda API, which is used in JobScheduler for the time
functions.

The JobScheduler uses its local time if a time zone is not specified.

Example:

<config time zone="Europe/Berlin">

<config time zone="..">_is overwritten by this parameter.

-udp-port=number (Initial value: 0) Port for UDP commands for the JobScheduler

The JobScheduler can also accept UDP commands addressed to the port specified in this setting. Note that a
UDP command must fit in a message and that the JobScheduler does not answer UDP commands.

The default value of udp_port=0 does not allow the JobScheduler to open a UDP port.

See also -port .

<config udp port="..">_is overwritten by this parameter.

-ip-address=ip_number (Initial value: 0.0.0.0) The interface IP address for TCP and UDP

The IP address to which the TCP and UDP ports are bound. The JobScheduler can then only be reached by
way of this address.

A host name can also be specified.
The default setting is 0.0.0.0, which stands for all IP addresses.

When another IP address as 127.0.0.1 or localhost is given, then the JobScheduler cannot be reached by way
of localhost.

<config ip address="..">_is overwritten by this parameter.

-reuse-port Reuse of the TCP and UDP ports

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 113

This option should only be used in exceptional situations, as it switches off the test whether or not a port has
been set free by the operating system.

Calls setsockopt(socket, SOL_SOCKET, SO REUSEADDR, true) .

This option should only be used in an emergency, should a port be permanently blocked by the operating
system although it is no longer used by an application. This can happen with Windows XP, when an application
is terminated by a debugger and UNIX can take up to a minute to release a port.

In some situations the JobScheduler cannot be reached with -reuse-port via TCP or UDP, when the port is
being used by other applications. The use of -reuse-port is not recommended.

-cmd=xmlcommand Immediately executed commands

The JobScheduler executes xml commands such as <start job>_immediately on starting.

-ini =file name Alternative factory.ini file
Specifies the Path/ Name for an alternative factory. ini_(page 94) file.

When references in this documentation are made to the factory. ini file, it should be clear that the value
given in this option is meant.

See also Spooler. ini path

-sos. ini =file name Alternative sos.ini file

Specifies the Path/ Name for an alternative sos. ini_(page 104) global configuration file. Note that this file
contains the JobScheduler license key.

-program-£file=file name JobScheduler file name

This option is used when the JobScheduler is called from a Java class file (for example, when debugging) and
jobs are to be started in their own processes.

-service Start as a daemon

The JobScheduler runs in the background under Unix, therefore no output can be written to the terminal;
output for stdout und stderr should be redirected to a file in order to prevent loss.

-validate-xml Validate XML Ddocuments against an embedded schema

-validate-xml- switches the validation off (should the schema have errors).

-use-xml-schema=dateiname Schema for validating the JobScheduler configuration

JobScheduler use a build-in schema for validating the configuration files. With this option you can overwrite it.
-env=name=value Set Environment Variables

-env=NAME=VALUE Sets the NAME environment variable.

Messages

[ERROR] SCHEDULER-318 Option -env=NAME=VALUE: missing '=' between name and value: -env=""
-exclusive Starts the JobScheduler for Exclusive Service

Requires use of a database - see factory. ini_(section| spooler], entry db= ..) (page 98).

More than one JobScheduler with the same Scheduler-Id (-id_) and the same database can be started with
-exclusive. In this case, then only one JobScheduler will become active. It is only after this active

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler

114

JobScheduler fails or is stopped (_<terminate shutdown="no">_), that another JobScheduler will become
active and take over operation. The takeover takes approximately one minute.

Warning: All participating JobSchedulers must be started -exclusive or -distributed-orders_. When one
JobScheduler is started with and one without this setting, then two JobSchedulers will run simultaneously,
which can lead to unexpected results.

See also -backup._.

Messages

[ERROR]

[ERROR]
[ERROR]
[ERROR]
[ERROR]
[ERROR]
[ERROR]
[ERROR]
[ERROR]
[ERROR]

[ERROR]

[warn]

[warn]

[warn]
[warn]
[warn]
[warn]
[warn]
[info]
[info]
[info]
[info]
[info]
[info]

[info]

[info]

[info]

[info]

SCHEDULER-357

SCHEDULER-358
SCHEDULER-359
SCHEDULER-362
SCHEDULER-365
SCHEDULER-367
SCHEDULER-371
SCHEDULER-372
SCHEDULER-377
SCHEDULER-381

SCHEDULER-386

SCHEDULER-823

SCHEDULER-827

SCHEDULER-836
SCHEDULER-837
SCHEDULER-994
SCHEDULER-996
SCHEDULER-997
SCHEDULER-805
SCHEDULER-807
SCHEDULER-811
SCHEDULER-814
SCHEDULER-819
SCHEDULER-820

SCHEDULER-821

SCHEDULER-822

SCHEDULER-825

SCHEDULER-826

This is a member of a cluster (option -exclusive or -distributed-orders), and
therefore needs role 'scheduler'

For an exclusive or distributed Scheduler, the database is not supported
Scheduler is aborting because it has become inactive

lllegal character in -id=

Scheduler is aborting because it has lost its exclusivity

DATABASE INTEGRITY IS BROKEN

Exclusivity has been stolen by JobScheduler member "

After own late heart beat, JobScheduler member " has taken exclusiveness
Scheduler is not yet active and cannot execute the operation

Last heart beat was time, seconds ago. Something is delaying JobScheduler
execution, the JobScheduler is aborted immediately

Dead JobScheduler member 'cluster_member _id' has resurrected

Own heart beat is late: next_heart_beat has been announced for (this is
seconds late)

Deactivating that dead Scheduler

Taking exclusiveness from that Scheduler

No heart beat for seconds (time), expecting heart beat within seconds
No heart beat for seconds (time) - JobScheduler seems to be dead
Making up an extra heart beat

No JobScheduler is active

Using database product

Executing command read from database:

Inactive JobScheduler " has the higher backup precedence (http_url)
Scheduler becomes active

Watching heart beat of that Scheduler

Scheduler member 'cluster_member _id' seems to be active, claiming its last
heart beat was s ago (pid=, url)

Scheduler member 'cluster_member_id' seems to be exclusive, claiming its
last heart beat was s ago (pid=, url)

No exclusive JobScheduler is running

That JobScheduler has terminated

Software- und Organisations-Service GmbH

April 2016

Configuring the JobScheduler

115

[info] SCHEDULER-831 Waiting s for start of non-backup Scheduler

[info] SCHEDULER-832 This is a backup Scheduler, waiting for a non-backup Scheduler

[info] SCHEDULER-833 Watching heart beat of that exclusive Scheduler, standing by to take over
operation

[info] SCHEDULER-834 Active JobScheduler has terminated properly

[info] SCHEDULER-835 This JobScheduler is becoming exclusive now

[info] SCHEDULER-838 . heart beat detected

[info] SCHEDULER-995

No heart beat for seconds (time), ignored for seconds because of recent
database reconnect

-backup Starts a JobScheduler as a Backup Scheduler

Only possible in combination with —exclusive_.

-backup-precedence=integer (Initial value: 1)

A backup JobScheduler only takes over operation - it cannot start a new operation. This means that after <
terminate continue exclusive operation="no">_the backup JobScheduler does not start, but waits for
another JobScheduler to start operation.

-backup is allocated its own service name when used together with -install-service_and
-remove-service_. This means that the backup JobScheduler can be run on the same computer as the active
JobScheduler as its own service.

The name of the main log file (page 174) contains the " backup" suffix.
Priority Amongst Backup JobSchedulers

Only possible in combination with —exclusive_.

When more than one inactive backup JobSchedulers are available to replace a failed JobScheduler, (
-exclusive_), then operation is taken over by the JobScheduler allocated the lowest -backup-precedence
value.

Note that it is possible for another JobScheduler as that dictated by the highest backup-precedence to take
over operation, should the backup JobSchedulers run on different computers and should the clocks of these
computers not be synchronized,

The default value is 1, when -backup_is set, otherwise it is 0.

-distributed-orders Distributed Orders

Requires use of a database (). More than one JobSchedulers can share the execution of orders, when they
are all started under the same Scheduler-Id (-id_), use the same database and the same configuration.

<job chain distributed="yes"> allows a job chain to be used for distributed operation.

Messages

[ERROR] SCHEDULER-357

This is a member of a cluster (option -exclusive or -distributed-orders), and
therefore needs role 'scheduler'

[ERROR] SCHEDULER-358

[ERROR] SCHEDULER-361 No database

[ERROR] SCHEDULER-370 Operation can only be performed on a distributed orders Scheduler
[ERROR] SCHEDULER-373 UNEXPECTED DEACTIVATION BY JOBSCHEDULER MEMBER

Software- und Organisations-Service GmbH

April 2016

Configuring the JobScheduler

116

[ERROR] ~ SCHEDULER-375 Order is distributed and therefore does not support operation "

[ERROR] SCHEDULER-378 After own late heart beat, this JobScheduler has been deactivated and the
occupied orders have been freed by JobScheduler member "

[ERROR] SCHEDULER-379 order is occupied by JobScheduler member "

[ERROR] SCHEDULER-380 job_chain orders_recoverable="no" cannot be combined with
distributed="yes", in

[ERROR] SCHEDULER-384 job_chain is distributed and therefore does not support operation "

[ERROR] SCHEDULER-385 Deletion of order in database has failed

[warn] SCHEDULER-812 Just before processing, order record in database has been occupied or
removed

[warn] SCHEDULER-816 Unable to release occupation in database

[warn] SCHEDULER-817 Missing order record in database

[info] SCHEDULER-813 Order is occupied by JobScheduler "

[info] SCHEDULER-815 Task should end but it has just been started with an order attached, so one
step will be done

[info] SCHEDULER-829 Releasing occupied order job_chain:id

[info] SCHEDULER-830 Because all JobScheduler tasks have been killed, the order in database has
not been updated. Only the occupation has been released

[info] SCHEDULER-879 Deactivating old cluster member with same ID

-configuration-directory Configuration directory

The default directory is the 1ive directory, which is specified in the (-config).

The JobScheduler looks in this directory for jobs, job chains, permanent orders, process classes and locks.

-java-classpath=file_names Java class path for JobScheduler process

The Java cLass PATH setting is made here. This is a list of paths - on Windows Systems these paths are
separated by semi-colons (;), on Unix systems by colons ().

Note that jokers can be used in these paths. The JobScheduler then replaces these jokers with the respective
file names. i.e. those existing in the file system.

. On Windows systems, the » and 2 characters may be used after the last directory separator.

. On Unix systems the [and] characters can also be used. Jokers can be used in every folder name of a
path (as in the csh shell).

. Linux (GNU) also recognizes the {,} characters, when used in the following syntax:

"xxx { alternative1, alternative2, ..} xxx",e.g./dir/sos.{hostware, mail. spooler}. jar.

The following points apply to every path in the class path:

. A path without a joker will be handed over to Java unchanged.

. A path containing a joker will be converted to the existing path before being handed over.
. Should no path corresponding to a joker be found then the path will be ignored.

. A path will also be ignored should it refer to a directory which cannot be read.

. Environment variables (e.g. s{ HoME}) will be replaced before a path is converted.

These settings are generally made in the sos. ini _(section[javal, entry class path= ..)file.

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 117

Example:

scheduler -java-classpath = s:\prod\bind\sos. *. jar;c: \jar\my. jar;c: \jar*

Environment variables (e.g. $HOME) are replaced by this attribute (see Settings which Allow Environment
Variables to be Called (page 106)).

-java_options =text Java options for JobScheduler process

This setting specifies the directory in which the HostJava is installed - e.g. -Djava. 1ibrary. path=.
These options are passed to the Java Virtual Machine.

These settings are generally made using sos. ini _(section| java], entry options= ..).

Environment variables (e.g. $HOME) are replaced by this attribute (see Settings which Allow Environment
Variables to be Called (page 106)).

-job-java-classpath=file_names Java class path for Jobs

See -java-classpath

Environment variables (e.g. $HOME) are replaced by this attribute (see Settings which Allow Environment
Variables to be Called (page 106)).

-job_java_options=text Java options for Jobs

See -java-options

See also <job java-options=".."> (page 42).

Environment variables (e.g. $HOME) are replaced by this attribute (see Settings which Allow Environment
Variables to be Called (page 106)).

-install-service=name Install as a Windows service

The JobScheduler is not started by this option but installed as a Windows service. In this case the following
command line options may be specified:

-cd
-config

-id

-log
-pid-file
-sos. ini

—env

Note that -install-service= name is the same as -install-service -service-name= name.

-remove-service=name Remove a Windows service
Removes a service which was previously installed using -install-service.

-remove-service= name is the same as -remove-service -service-name= name.

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 118

-service-name=name (Initial value: sos_scheduler) Windows service internal name

Only used together with -install-service or ~-remove-service. When this option is missing but -id=is
specified, then the JobScheduler uses the name sos scheduler scheduler_id. If -backup_has been set, then
this option adds backup.

-service-display=text Windows service name
Only used in conjunction with the -install-service. This name is shown by the Windows service controller.

It may contain spaces. Should this option not be specified, the JobScheduler creates a name from the service
name (see -service-name=).

-service-descr=text Windows service description

Only used together with the -install-service.

-need-service=name Service required by the JobScheduler (Windows only)

This option specifies a service such as a database server which must be running before Windows starts the
JobScheduler. This option must be used in conjunction with the -install-service.

This option can be repeated should the JobScheduler require a number of services.
-scheduler=host.port The JobScheduler TCP address

The name (or IP number) and port number of the JobScheduler being addressed.

-log=file_name scheduler.log file name

This setting causes the JobScheduler to write a detailed protocol. This protocol is intended for use in problem
diagnosis. The file name should be fully specified here (i.e. as a full path).

A plus character (+) written directly before the file name causes an already existing protocol to be continued.
Otherwise such a protocol will be overwritten.

Categories can be used to extend or restrict the log file. Category names are added (separated by spaces)
before the file name, which is then preceded by a larger than (>) sign.

The list of categories can be found here.

Example:

log = c:/tmp/scheduler. log
log = scheduler. wait >scheduler. log
log = scheduler. wait com server.* >scheduler. log

The factory. ini_(section[spooler] , entry 1og= ..) setting is overwritten by this parameter.

-process-class=name

The name of the temporary job process class -, see <job process class=".."> (page 42).

-language=script_language (Initial value: shell) The Job Script language

Script language, see <script language=".."> (page 77).

-at=yyyy-mm-dd HH:MM (Initial value: now) Start time

Start time - in the form "yyyy-mm-dd HH:MM[:SS]". See <at at=".."> (page 18).

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 119

A job will not be started after its start time has been passed.

The JobScheduler uses the current time from the computer on which it is running when, for example, starting
jobs.
-at=now is the default setting and causes a job to be started immediately.

-scheduler

-log

-job-chain=name Job Chain

The name of the job chain on which an order is to be run - see <add order job chain=".."> (page 13).

-order-id=id The Order ID

The order identifier - see <add order id=".."> (page 13).

-title=text The Order Title

An order can be given a title. See <add order title=".."> (page 13).

-tcp-port
-send-cmd=xmlcommand Sending a command to another JobScheduler
This option does not start a JobScheduler but sends an XML command to another JobScheduler on the same

computer which has the same -tcp-port= option. This can be, for example, <terminate>_: -send-cmd="<
terminate/>"

This command is sent to the IP address specified in the <config ip address=".."> attribute or, should this
not have been set, to 127.0.0.1.

-kill Stopping a Running JobScheduler using 'kill'

Stops a JobScheduler whose process is specified in the -pid-file_file. The JobScheduler is stopped using
kill -SIGKILL.

-kill=pid Stopping a Running JobScheduler with 'kill'
Stops the process with the specified PID using ki1l -SIGKILL.
-pid-£file=dateiname

-expand-classpath Expand the Java Class Path

Expands the Java Class Path, which is specified as a parameter. This means that jokers are processed as
sos. ini (section] java] . entry class path= ..).

The JobScheduler writes the results to stdout. Unless otherwise specified in an option, the JobScheduler will
then terminate itself, without any other output.

Example:

export CLASSPATH=""scheduler -expand-classpath='/opt/java/lib/*.jar' "

-V Show Version Number

Causes the JobScheduler to output its version number and date when starting.

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 120

1.8 JOE - JobScheduler Object Editor

1.8.1 Configuration and Documentation of JobScheduler objects

The JobScheduler reads its configuration from XML files, which can be created and edited using JOE. JOE
provides a graphical user interface with forms for all elements of the JobScheduler configuration. Further user
assistance in the form of tool-tips and wizards is provided.

Alternatively, the XML configuration can be maintained using any text editor.

JOE creates or modifies the XML elements in the JobScheduler configuration, in accordance with the entries made
in its forms. When the changes made are saved, the JobScheduler configuration file - which is usually called
scheduler.xml, is rewritten. JOE validates all entries made with the current JobScheduler XML schema - errors in
entries will be detected immediately.

JOE can also be used to document jobs for the JobScheduler - it generates the documentation in an XML format,
which can be shown with navigations elements in a web browser in HTML format, using an appropriate style sheet.
1.8.1.1 Starting JOE

JOE belongs to the JobScheduler installation. The JobScheduler installation directory contains the
bin/jobeditor.cmd file, which is used to start JOE. Here, the INSTALL_PATH parameter should be set to the
JobScheduler installation directory path.

1.8.1.2 Creating the JobScheduler Configuration

In order to create a new configuration, the File/New/Configuration menu item should be selected:

1> Job Scheduler Editor [*scheduler.xml]
iy

lﬁ Options Help
Open... Ctrl+0 i
w Configuration. .. Ctrl+C
- Documentation... Ckrl+P

e B Job Chain Details... Ctrl+F
Save fs... Ctrl+a

Exit Ctrl+E
1"+ Process Classes

JOE then opens its main window containing a tree view showing a series of elements such as Process Classes,
Jobs, Job Chains etc.

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler

121

fiiy Job Scheduler Editor [scheduler.xml]
File Options Help
4 scheduler.xml £2

—Scheduler Elements

- Config
~Base Files

- Security

- Cluster
~Process Classes
~Locks

- Start Script
- Http Server
- Holidays

- Jobs

- Job Chains
-~ Orders

-~ Commands

fra)
52}

—Config

Scheduler ID: | prod-scheduler

Parameter: |

Include Path: |

IP-Address |

Log Dir: |

Mail XSLT | config/scheduler_mail.xsl

(Optional) - the path to and name of a style sheet that is used to transform mails sent b
— Job Scheduler Por|{The style sheet config/scheduler_mail. xsl file is available as part of the Job Scheduler in:

™ Use the same port For udp and tcp TCP: UDP;

Port: | | 4444 | 4444
—Main Job Scheduler

I use a main scheduler

Host: | Port: O
—Main Java Options

Class Path: |

Options: |

—Comment

o

Tool-tips are available for all form fields and control elements of JOE. In addition, the F1 button can be used to start
the JobScheduler documentation, which is contextual and will open at the relevant object that is currently being

worked on.
For example:

When the job configuration form is opened:

Software- und Organisations-Service GmbH

April 2016

Configuring the JobScheduler

122

Config
- Base Files
- Security
- Cluster
- Process Classes
- Locks
- Skart Script
t)- Http Server
- Holidays

- Jab: ftp:
- Job Chains
- Orders

- Commands

F1 causes the documentation to open at the <job> XML element:

ut [~
2

anonymous

binary

o=

Software- und Organisations-Service GmbH

April 2016

Configuring the JobScheduler 123

XML Element <job>

<job
force_idle_timeout = "yes no" Task ended by idle_timeout despite min_task
idle_timeout = "dauer" Limit for the waiting_for_order State
java_options = "stnng"
min_tasks = "zah! The minimum number of tasks to run
name = "jobname"
order = "yes no" Auftragsgesteuerter Job
priority Dg = "process_prionty"
process_class = "process class"
spooler_id = U
tasks = "number" The maximum number of tasks
temporary = "es_ho"
timeout = "dauer" The time allowed for an operation
title = "text"
visible = "yes|no"
2
cdescription ...» Description
cparams ...» Parameters
¢script ...» Program Code
<process ...» External Programs (as an alternative to <script=)
¢start_when_directory_changed ...> Directory Monitoring
cdelay_after_error ...» Job Delay after an Error
cdelay_order_after_setback ...> Delay Order after Setback
crun_time ..» The Job Run Time
ccommands ...» Commands carried out after the end of a task
¢/job>

1.8.1.3 Opening an Existing Configuration

Existing JobScheduler configuration files are opened using the File/Open menu items:

fiii Job Scheduler Editor [’

File Options Help

ML
ew... e+ > |
=

Save Ctrl+S
Save As... Ctrl+a

Exit Ctrl+E
1" Process Classes

Example - the scheduler.xml file from the JobScheduler installation, showing the base file configuration:

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 124

iy =1of x|
File Options Help
#H scheduler.xml EE\
—Scheduler Elements - —Base Files
Config Base File: | Apply Base File
Base Files
Security Comment: _“_J
Cluster
Process Classes
Start Script
[+ Http Server L]
Holidays
Job:
2 : Base File I Comment
Job Chains — ; 5 : :
scheduler_automation_java.xml include job configurations
Orders :
scheduler_update_service.xml
Commands scheduler_mysql.xml
scheduler_managed.xml

1.8.1.4 Recommended Procedure

Open the scheduler.xml file in the JobScheduler installation.
Enter the computer and/or network in the Security form, which is to execute commands via TCP and UDP.

Enter the jobs the JobScheduler should execute, together with the relevant job parameters in the Jobs form.
For each job entered, JOE creates a new branch in the job tree view. Each job has additional forms, in which
further properties such as executable program code and start times are entered. A wizard is available for
creating a job by copying a standard job.

Note: when jobs are defined in XML files which themselves are included using <base> then the included XML
file will be opened in JOE together with the job definition.

When Jobs are to be executed within a job chain, then the job chain should be entered using the Job Chains
form. Each node in a job chain must be specified individually and a job allocated to each node.

Note: when job chains are to be defined in XML files, which are included using <base>, then the XML file with
the job chain definitions is to be opened.

Note that when order controlled jobs are to be used in job chains, then the way in which the orders are
created must be specified:

Orders can be created using directory monitoring - this is done by specifying file orders in the Job Chains
form.

Orders can also be directly created using the <add_order> command - this type of order is defined in the
Orders form. Using the information entered in this form, JOE generates an <add_order> element, which can
be shown using the Commands form.

1.8.1.5 Job Wizard

The Job Wizard is used to create a new job on the basis of an already documented Template Job.

Existing job are available from a selection of documented template jobs that are delivered with the JobScheduler.
These jobs can be found in the /jobs directory in the JobScheduler installation directory.

The Job Wizard reads out this /obs directory and makes all the jobs found there available for import. An imported
job has all the features of the original, in particular the job-language. Job parameters are also be taken over but
can be modified in JOE. Further settings such as the number of tasks, the start times, time-out settings, can then
be changed one after the other. Each step in the Wizard is supported by explanatory text

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 125

To start the Job Wizard, Job Wizard is simply selected in the Jobs form as shown:

MNew Job

Job Wizard

Remoye Job

The following steps are followed in the wizard in creating a new job:

The Following steps will be carried out when creating this new element:

. Stand-alone job or order controlled job?

. Select job

. Take over job parameters

. Parallel execution of tasks

. Job implementation

. Timeoutf Idle Timeout

. Start times] Directory monitoring

. Restarting a job after an error {delay after error)

. Delayed repetition of set back orders {delay after setback)

WO 00 O N B QO

1.8.1.6 Creating Job Documentation
JOE can be used to create a documentation for JobScheduler jobs in a predefined format.

The documentation is generally written by the job developer and serves users/deployers or other developers
configuring jobs for particular job implementations.

JOE allows the job documentation file to be created using forms, without knowledge of the XML format. The
scheduler_job_documentation.xsl style sheet allows users to view the documentation in HTML format using a web

browser.

A documented job is saved in the JobScheduler /obs directory, and it can thereby be used by the Job Wizard as a
prototype for further jobs.

Select the File/New/Documentation item:
Iﬁ Options Help
Open... Ctrl+0O

EINNETIIE corfiguration... Ctri+C

e ::trl e Documentation... Ctrl+P
Job Chain Details... Ctrl+F
Save As... Ctrl+a

Exit Chrl+E
1" = Process Classes

A contextual help is available for each form of JOE and can be opened using F1:

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 126

3 Documentation Scheduler Editor - Microsoft Internet Explorer =10

Datei Bearbeiten [\Ansitht ‘ Favoriten Extras 7 i

G 2wick v = % A Qouten GilFevorten Grieden 4 2 J W - H 9
Adresse l@ J:\Dataldokulentscheduler_editortsos_helpsos_help.htm _'J ‘(?Wechselnzu Links * QSnaglt g‘
Google Los gehe's! 50503 bkt ‘ () Enstelungenv
Highlight Text o
Gl | Cear |ff JoB SCHEDULER - JoB DOCUMENTATION EDITOR
Print Foot of Page
| 3
2 Job Elements
1 Summary
The form far entering job elements is opened by clicking on the Job link in the Editor tree menu.
2 Joh Elements
21 Process Elements The job Name und Title must he entered. -

2.2 ScriptElements

23 Monitor Serits The Order field is used to specify whether or nata job is order contralled. An order activates the processing of a job chain and cantains the

parameters for ane or mare jobs in the job chain,

3 Documentaon Releases The following entries are allowed:

4 Resources
4.1 File Resources

4.2 Database Resources
4.3 Example Resources

yes: The job is order controlled.
no. The joh does not process orders.
hath: The job can e started by orders or job starts.

' In addition, job is defined by either a <process> element or a <script> element,
§ Job Configuration
a1 Job Parameter Elemerts Afterthe joh documentation together with the necessary parameters has heen saved (menu item "File / Save" or"File / Save as"), it can he
52 Payload Elements wiewed by clicking the Preview button in the Job Elements form.
5.3 Sefings

2.1 Process Elements
6 Dacumentation
A<process= elementis usedto call an executable file. The Use process radio hutton should he activated when a <process= elementis to he
Appendices documented.

Note that thi Iready existing <script= element descripti isahl leted from th on.
AL Seherma XGLT Sie St ote that this causes any already existing <script= element description t be disabled and deleted from the documentation

B B M e The Name ofthe executable file should be entered. Should a parameter he handed aver when the file is called, then it should be entered in

the Parameter field.

The Log field can he used to specify the name for a log file. j

€] DT B Lokaes ntanet 4

1.8.1.7 Remote Connections

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 127

1.8.1.7.1 FTP/SFTP

The JobScheduler can open and save XML configuration files per FTP (File Transfer Protocol) and SFTP (FTP
over SSH). The FTP dialog can either be opened by way of the File -> FTP menu entries or by clicking on the FTP
toolbar icon:

fiii Job Scheduler Editor

File Options Help

Open Ctrl+0
MNew Ctrl+N >
Open Hot Folder Ctrl+D
Open Remote Configuration Ctrl+R P
Save Chrl+S
Save A5

Save As Hot Folder Elements: Ghrl+B

Open Hot Folder By FTP
\WebDav P ¥

3 Save By FTP
Exit Chrl+E

fii Job Scheduler Editor
File Options Help

s ECE

Open By FTP
Open Hot Folder By FTP
Save As By FTP

This opens the dialog in which the profile (i.e. FTP connection) to be opened is selected, followed by the file to be
opened.

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 128

i

—Open
I wilma@sos v | Connect I Profiles |
| Jtempjtest Change Directory I
Name Y] Size l Tvpe Refresh |
=y..
I Folder2 Folder b Bt I
I Foldert Folder Remove |
I Folder3 Folder
1L Folder4 Folder
I folders Folder Select an FTP
=] 12345.job.xml 678 File Connection
=] 123567.job.xml 79 File
El c.xml 0 File
=] deta.xml 510 File
=1 2.job.xml 79 File :
= 123567390, job. xml 79 File ~ Change Directory
=] readme.txt 14932 File
=1 37.job.xml 100 File ~|
Filename | Open |
Close |

I mode. O 0..ftp server reply [cd] [directory ftp_file_path=./.ftemp/test]: 250 Directory successfully changed. 0O Log I

1.8.1.7.1.1 Control Elements

1.8.1.7.1.1.1 Select FTP Connection

FTP connections that have already been configured can be selected from the drop-down list.

1.8.1.7.1.2 Change Directory
This text box is used to show the pre-selected directory on the FTP server. This directory will be opened in the
dialog as soon as the connection with the FTP server is made. When navigating on the server, this text box is used

to show the current directory open. It can also be used for direct navigation. After entering the desired address in
this box and clicking on the "Change Directory" button, the FTP server will directly go to the desired folder.

1.8.1.7.1.3 Refresh

Actualises all directory and file information from the FTP server.

1.8.1.7.1.4 New Folder

Creates a new folder on the FTP server.

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 129

1.8.1.7.1.5 Remove

Deletes the file or folder selected from the FTP server.

1.8.1.7.1.6 Open

If the FTP dialog has been opened using the "Open by FTP" menu entry, then the "Open" button will cause the
XML configuration file selected to be downloaded from the FTP server and opened in JOE.

If the FTP dialog has been opened using the "Open Hot Folder by FTP" menu entry, then only directories will be
shown in the dialog. Selection of a hot folder will then cause all the XML configuration files within that folder to be
downloaded from the FTP server and opened in JOE.

1.8.1.7.1.7 Close

Closes the FTP dialog.

1.8.1.7.1.8 Log

Shows the protocol dialog. This contains all commands sent to the FTP server and its replies.

1.8.1.7.1.9 Profiles

Shows all configured FTP connections. Allows new connections to be added or existing ones to be edited or
deleted.

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 130

[empfest

f E

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 131

| iy Profiles

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 132

| il Profiles

cation Methods

All FTP connections or profiles are saved in a configuration file that can be found under the address
scheduler install directory/config/factory.ini. This file has the following section and entries for each
profile:

[profile profilename]
host=

port=

user=

root=

localdirectory=
transfermode=
save_password=
protocol=SFTP
use_proxy=

proxy_server=

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 133

proxy_port=
auth_method=

auth_file=

1.8.1.7.2 WebDAV

JOE can open and save XML configuration files per WebDAV. The WebDAYV dialog can be opened using the File ->
WebDAV menu entries

5 Job Scheduler Editor

File Options Help

Open Cerl+O
Mewvs Cerl4 >
Open Hok Folder Cerl+D
Open Remote Configuration Cerl+R >
Save Ctri+S
Save 45

Save s Hot Folder Elements ctrl+B
FTP .

webDaw Open By YWebDavw
Open Hot Folder By WebDaw

Exit CErl4+E

Save By WebDaw

The WebDAV menu entry is only active, when the libraries necessary to make WebDAV connections are available.
These libraries are not part of the JobScheduler distribution because of licensing reasons but can be downloaded
from the Sourceforge webdavclient4 project under https://sourceforge.net/projects/webdavclient4j/.

The following libraries should be available in the scheduler installation directory/lib directory, although
variation in the library name and number may occur.

. commons-logging.jar

. webdavclient4j-core-0.92.jar
. commons-codec-1.3.jar

. commons-httpclient-3.0.1.jar

JOE is started by a command file, which is found under scheduler installation directory/bin. The
cLassPATH in this file must be extended to include the above mentioned libraries.

JOE opens a dialog in which the profile (i.e. WebDAV connection) to be opened is selected, followed by the file to
be opened.

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 134

x|

—Open
I wilma@webdav v | Connect I Profiles |
lhttp:ﬁwilma.sos,n’mo.i‘ Change Directory |
MName Y l Size l Tvpe Refresh |
=..
2 Eolder New Folder |
I NeuerOrdner Folder Bemave I
I c Folder
10 1010 Folder Select an WebDAY
I b Folder Connection
I 88 Folder
=] jobxvZ.job.xml File
=1 index.html File URL
=1 a.xml File
] docz.xml File
=] 37.job.xml File
= c.xml File
Filename | Open |
Close |
..webdav server reply [connect] [status= OK (200)..webdav server reply [changeDirectory] [status= OK (200} Log

1.8.1.7.2.1 Control Elements

1.8.1.7.2.1.1 Select WebDAV Connection

WebDAV connections that have already been configured can be selected from the drop-down list

1.8.1.7.2.2 Change URL
This text box is used to show the pre-selected URL on the WebDAV server. This directory will be opened in the
dialog as soon as the connection with the WebDAV server is made. When navigating on the server, this text box is

used to show the current URL open. It can also be used for direct navigation. After entering the desired address in
this box and clicking on the "Change Directory" button, the WebDAV server will directly go to the desired URL.

1.8.1.7.2.3 Refresh

Actualises all directory and file information from the WebDAV server

1.8.1.7.2.4 New Folder

Creates a new folder on the WebDAV server.

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 135

1.8.1.7.2.5 Remove

Deletes the file or folder selected from the WebDAV server.

1.8.1.7.2.6 Open

If the WebDAV dialog has been opened using the "Open by WebDAV" menu entry, then the "Open" button will
cause the XML configuration file selected to be downloaded from the WebDAV server and opened in JOE.

If the WebDAV dialog has been opened using the "Open Hot Folder by WebDAV" menu entry, then only directories
will be shown in the dialog. Selection of a hot folder will then cause all the XML configuration files within the folder
to be downloaded from the WebDAV server and opened in JOE.

1.8.1.7.2.7 Close

Closes the WebDAV dialog

1.8.1.7.2.8 Log

Shows the protocol dialog. This contains all commands sent to the WebDAV server and its replies.

1.8.1.7.2.9 Profiles

Shows all configured WebDAV connections. Allows new connections to be added or existing ones to be edited or
deleted.

q

—Profiles

Properties l Proxy |

Apply I
MName I webdav@@wilma ZI News Profile I
protocol L] Remove I
User Name | admin
Password |
URL I http:/fwilma.sosfmo/

Directory For Local Copy I c:ftemp/ixis

Save Password H

Close I

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 136

M 5,

—Profiles

Properties Proxy |

Apply
MNew Profile |
IV Use Proxy

Remove

Proxy Server |

Proxy Port |

Close I

All WebDAV connections or profiles are saved in a configuration file that can be found under the address
scheduler install directory/config/factory.ini. This file has the following section and entries for each
profile:

[webdav_profile profilename]
url =

user =

password =

localdirectory=
save_password=

use_proxy=

proxy_server=

proxy_port=

debug=

1.9 Database

The JobScheduler be used either with or without a database. Operation with a database has the following
advantages:

Task Queue

The JobScheduler stores all queued tasks in a table under its JobScheduler ID (Option -id_). When the
JobScheduler restarts, then all queued tasks are reread from the database.

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 137

Orders

The JobScheduler saves every order in a database table with the JobScheduler ID (Option -id_). When the
JobScheduler restarts, it rereads the orders from the database.

Task History

The JobScheduler records information about every task performed, apart from the JobScheduler start and
stop.

Instruction History
The JobScheduler records the course of every operation in the job stream in the instruction history.

Further information about the instruction history can be found here: Job History (page 138).

The creation of the database tables is described in »SQL Instructions Used by the JobScheduler« (page 341).

1.9.1 Settings

Database and Error Handling
factory. ini_(section[spooler], entry db= ..)

factory. ini_(section[spooler], entry need db= ..)

factory. ini_(section[spooler], entry max db errors= ..)

Table Names
factory. ini (section[spooler], entry db variables table= ..)

factory. ini (section[spooler], entry db tasks table= ..)

factory. ini (section[spooler], entry db orders table= ..)

factory. ini_(section[spooler], entry db history table= ..)

factory. ini_(section[spooler], entry db order history table= ..)

Should a History be Written?
factory. ini (section[spooler] , entry history= ..)

factory. ini (section[spooler], entry order history= ..)

factory. ini (section[job], entry history= ..)

Should Protocols be included in the History?
factory. ini (section[spooler], entry history with log= ..)

factory. ini (section| spooler], entry order history with log= ..)

factory. ini (section[job], entry history with log= ..)

The Addition of Custom Columns in the Task History
factory. ini _(section[spooler], entry history columns= ..)

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 138

factory. ini _(section[job] , entry history columns= ..)

Task. set history field()

The Conditions for an Entry in the Task History
factory. ini (section[spooler] , entry history on process= ..)

1.9.2 Application Programming Interface

The spooler object initializes table names
Spooler.db variables table name()

Spooler.db tasks table name()

Spooler.db orders table name()

Spooler.db history table name()

Spooler.db order history table name()

Describe history fields (factory. ini (section[job] , entry history columns= ..))
Task. set history field()

1.9.3 Commands

Show History
Command <show history>

Command <show task>

Command <show order>

1.9.4 Error-Tolerance

The JobScheduler tolerates database errors and can carry out routine operations with a temporarily unavailable
database. More detailed information can be found in factory. ini (section| spooler], entry need db= ..).

The JobScheduler can be set to wait for a reconnection in the event of loss of contact with the database. In this
situation, only commands other than TCP or HTTP are processed; The JobScheduler cannot be shut down, only
terminated (see Termination (page 233)).

1.10 History

1.10.1 1. Purpose of the History

The progress of each job should be recorded and stored as follows:

. The record identifier is the ID of the task started for a job and is unique for each task.

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Configuring the JobScheduler 139

. Scheduler Id

. Jobname

. Start time

. End time (if reached)

. The start event (should there be more than one start event, the JobScheduler will attempt to define the most
important event)

. Parameter (in XML)

. The number of job steps (the number of the spooler_process calls)

. Error flag

. Error code and error text

. The job protocol (only when the protocol is recorded in a database)

. Extra Fields

Excerpts from the history can be read via the TCP interface.

The History Table Columns

id The Unique Task Identifier (the primary table key)
spooler_id Scheduler Id

job_name Job name

start_time Start time (yyyy-mm-dd HH:MM:SS)

end_time End time (yyyy-mm-dd HH:MM:SS)

steps Number of spooler_process() steps

cause Cause of start

error 0: No error; 1: Error

error_code Error code

error_text Error text

parameters Job parameters (if available) as XML document (Clob)
log Job protocol (not in the tab-separated file when operating without a database)

1.10.2 2. History File

The history can either be written in a simple file or recorded in a database.

1.10.2.1 2.1 Simple File (tabular data)

A record file in the protocol file folder (Option -10g-dir=) is created for every job. Fields in this file are separated
by tabulator characters. An entry is made at the start of a job, which is then overwritten with the complete data after
the job has ended.

The file name is: log_dir /history. Scheduler_id. job. jobname. txt

The file is rewritten each time the JobScheduler is started. A previously existing file can be renamed and/or
compressed before a JobScheduler start.

The JobScheduler writes column names in the first row of the file.

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 140

Tab characters in the file (resulting from error messages) are suppressed.
Every field has a maximum length of 1024 characters. Longer entries are cut off.
Archiving

Existing history files are overwritten when the JobScheduler is started. However, these files can be archived using
the history archive entry in the factory. ini_(page 94):

[spooler]
history archive = yes| no| gzip

[Job jobname]
history archive = yes| no| gzip

history archive=yes renames a history file. Note that this command causes the file name to be extended with
an (exact to the second) time stamp.

history archive=gzip compresses the file using z1ib (gzip) from Jean-loup Gailly (http://www.gzip.org/zlib/).
The file name ending is thereby extended with . gz. The resulting file can be decompressed using gzip. It is
however also readable using Hostware with "'n1 | gzip | history. gz".

1.10.2.2 2.2 Database

All data is written in a database table. The task protocol is written in a blob.

The table name is spooler history. If this file does not exist, then a database with the same name is created. If
the database table spooler history does not exist, then it will be created (only for MS Access databases).

The table names can be set in the factory. ini_(page 94) configuration file:
[spooler]

db_history table = tabellenname | SCHEDULER HISTORY
db_variables table tabellenname | SCHEDULER VARIABLES

The next free job number is held in an entry in the SCHEDULER VARIABLES table.

The need db=no entry is used to allow the JobScheduler to start when the history database cannot be opened. The
default setting here is need db=yes.

[spooler]
db = odbc -db=schedul er

need db = no

When only a database file name is specified with do= and 1og dir=*stderr is set, then the database cannot be
opened because of the missing directory. In this case the JobScheduler does not start if need db=yes is set.

Automatic Creation of a MS Access Database

Should only a simple file name be specified with db=, then the JobScheduler can automatically create a Microsoft
MS Access database when "odbc -create"is set (see ODBC file type).

The sCHEDULER HISTORY and SCHEDULER VARIABLES tables are used in the database. These tables are created as
necessary using the Microsoft Access SQL syntax.

JobScheduler Start Entry

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 141

The JobScheduler makes an entry in the history with its own ID on starting. On ending, the JobScheduler writes the
time in this entry, so that both start and end times are noted. The job name is "(spooler) "

1.10.2.3 2.3 Configuration of the factory.ini File

The following parameters can be set in the factory. ini configuration file:

[spooler]

db = database

db _history table = SCHEDULER HISTORY
db _variables table = SCHEDULER VARIABLES
history = no| yes

history columns = fieldl, field2,...
history on process = yes| 1| 2

history with log = no| yes| gzip
history archive = no| yes| gzip

[Job jobname]

history = no| yes

history columns = fieldl, field2,...
history on process = yes| 1| 2

history with log = no| yes| gzip
history archive = no| yes| gzip

Settings made in[Job jobname] have priority over those made in[spooler] .

history=no suppresses the history. Should a database be specified, however, the entry for the start of the
JobScheduler will still be made.

history on process sets the number of requests of spooler process() which can be made before an entry is
made in the history. Should spooler open return false, then an entry will not be made when history on process
is setto 1.

history with log allows the task protocol to be recorded in the database as well. The protocol may be
compressed if desired.

1.10.2.4 2.4 Start Events (Cause)

The cause of a job start is noted in a row in the history:

none The task has not started (this is not noted in the history)
period_once <run_time once="yes">

period single <run_time single start="..">

period repeat <run_time repeat="..">

job repeat spooler job. repeat=...

queue spooler job.start() oder <start job>

queue_at as queue, with specified start time (Option at)

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 142

directory Directory monitoring (start when directory changed) has started the job
signal <signal object>
delay after error spooler job.delay after error

1.10.3 3. Task Recognition and Extra Fields

Every task has an identifier. When a database is used, the JobScheduler obtains this identifier from the
SCHEDULER VARIABLES table. This identifier is then unique to all JobSchedulers which use this database table.

Otherwise consecutive numbers are given. The first task is given the number 1.

The identifier can then be recalled in scripts, which use the JobScheduler API, with the id property:
meine id = spooler task.id

The history can accept further fields which the job can fill:

spooler task. history field("fieldname") = value

The fieldname must be declared as a row in the tabular file or in the history table. The case used here is irrelevant.

When the history is recorded in a database, then it may be significant which type a value is, in particular if it is a
number or a character string.

1.10.3.1 3.1 Extra Fields in a Tabular File
Extra fields must be declared in the factory. ini configuration file
[spooler]

history columns = columnlist

[Job jobname]

history columns columnlist

The columnlist is a list of column names, separated by columns and which is included in the tabular file.

1.10.3.2 3.2 Extra Fields in a Database

Extra rows in the history table are automatically recognized.

When the JobScheduler creates the SCHEDULER HISTORY table, it also creates the necessary rows as defined in
history columns. These rows are defined as char(250) type.

1.10.4 4. Reading the History via the TCP Interface

<show history job="jobname" prev="number| all "what="all"/>

Returns, for the current job jobname, the last number of entries in the history, sorted in reverse order. The default
value for number is 10. All entries are read when tail="al1" is set. Note that this function requires a lot of

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 143

memory. This is because the history is compiled as an XML document with the DOM in the main memory. A
maximum of 1000 entries will be returned.

what="all" returns the job protocol as well.
Extracts out of the history can be read using the following (note that the what attribute can always be used here):
to obtain the number of entries before the ID:
<show_history job="jobname" id="id" prev="number"/>
to obtain the number of entries after the ID:
<show_history job="jobname" id="id" next="number"/>
to obtain only the id entry: it is recommended that the job protocol for a particular task is read with what="a11".
<show _history job="jobname" id="id"/>
The result looks like:
<history>
<history.entry id="identifier" job="jobname" start time="starttime" end time="end

time" ...>

<variableset>
<variable name="namel" value="valuel"/>
<variable name="name2" value="valuel"/>

</variableset>
<log>Jobprotocol</log>

</history. entry>
<history.entry ...>

</history. entry>

</history>

1.10.5 5. Error Handling

Errors on opening or writing the history are noted in the JobScheduler protocol and otherwise ignored.

1.11 Running the JobScheduler as a Service or Daemon

The JobScheduler is operated on Window systems as a service. This is automatically set-up by the JobScheduler
installation program. In the following section, the command line operations relevant to the set-up are described.
These operations are written by the installation program in the . \bin\jobscheduler. cmd (Windows) and
. /bin/jobscheduler. sh (Unix) start scripts.

Calls
scheduler -remove-service [-service-name=name] [-id=id]

scheduler [-remove-service] -install-service

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 144

[-service-name= name] [-service-display= Shownname] [-service-descr= description]
[-need-service= name]
[options]

Parameters

-remove-service

Removes the service. The service must exist.

-install-service

Installs the service. Additional command line options, which are not described here, are passed over when the
JobScheduler service starts (see -id=, -1og-dir=)

-service-name= hame

Sets the (internal) service name for -remove-service Or-install-service.

The default value is sos_scheduler: when the option -id= is set, the default value is sos_scheduler id
-service-display= Shown name

Sets the name under which the service will run.

The default value used should the service name not be specified is "SOS JobScheduler". When the option -id= is
set: "SOS JobScheduler -id=id". and when -service-name= is specified, then this is used as the default name.

-service-descr= description

The service description. The default value here is "Job Automation Processor".
The JobScheduler ignores this option in Windows NT 4.

-need-service= Service

Specifies another service which this service depends upon. Windows then starts the current service when the other
is running. This option can be repeatedly set. An unknown service name will not cause an error in Windows.

This option can be used, e.g. when the JobScheduler and its database are operated for the same server and it
should be guaranteed that the database service is up and running before the JobScheduler starts.

The name of a service is shown in the System services panel.
Errors on Starting

The windows service manager does not allow a service to return an error message, should the service be unable to
start. Therefore, services make simple entries in the events viewer.

In addition the error message is sent per E-mail. This is done using the 1og mail from, log mail to,
log mail cc,log mail bcc und smtp parameters specified in the factory. ini file. A configuration file specified
using -ini= is not used in this situation. However, settings specified in the sos. ini file, section [mai1l] will be
used (see also sos. ini, section[spooler] (page 175)).

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 145

1.12 Backup JobSchedulers

1.12.1 JobScheduler Backup Cluster

A JobScheduler backup cluster ensures fail-safe operation of a (primary) JobScheduler. The cluster comprises this
primary JobScheduler and one or more reserve (backup) JobSchedulers. A fail-safe system consists of a primary
JobScheduler and at least one backup, with both these JobSchedulers running on different computers.

All the JobSchedulers in a backup cluster show their own availability by sending out "heartbeats" and, at the same
time, checking whether the other Schedulers in the cluster are available by monitoring their "heartbeats". Should
one of the backup JobSchedulers determine the absence of the heartbeat from the primary JobScheduler over a
longer period of time (ca. 1-2 minutes), then it will take over processing. This means that it will continue to process
the open orders and jobs started by the primary JobScheduler and, if required, start new jobs.

At the most, only one JobScheduler in a cluster is active - the primary JobScheduler - and starts jobs and
processes orders. The other backup JobSchedulers are inactive - that is they wait for the primary JobScheduler to
fail before becoming active and taking over processing.

The requirements for the operation of a backup JobScheduler cluster are shown schematically in the following
diagram and described in detail in the next section.

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler

146

Availability: Prerequisites
Primary and Backup Job Schedulers

JOBSCHEDULER

Network Storage

Primary Job Scheduler Backup Job Scheduler

Job Configuration Job Configuration

A

Availabilty Check

JOBSCHEDULER JOBSCHEDULER
Heartheats Heartheats
Job History
Order History
u Job configurations are W The Backup Job Scheduler
loaded from a network storage, constantly checks if the
alternatively from a clustered Primary Job Scheduler is
database (Managed Jobs) up and running
u Primary and Backup Job W The Backup Joh Scheduler

Schedulers use the same job will not execute any jobs

configurations and database

Software- und Organisations-Service GmbH » www.sos-berlin.com

The diagram below shows schematically the situation where a backup JobScheduler has become active and taken

over the processing of jobs and orders:

Software- und Organisations-Service GmbH

April 2016

Configuring the JobScheduler 147

Availability: Automatic Failover

Failover from Primary to Backup Job Scheduler

JOBSCHEDULER

Primary Job Scheduler Backup Job Scheduler
Job Configuration Job Configuration
Availability Check
JOBSCHEDULER JOBSCHEDULER
Heartheats Heartheats
Job History Job History
Order History Order History
Pending Orders
m Fallure of the Primary Job Scheduler W The Backup Job Scheduler
Is detected by the Backup Scheduler switches to execution mode

m Loss of the TCP connection betwaen and runs jobs from its configuration

Primary and Backup Job Scheduler The Backup Job Scheduler
and missing heartbeats in the completes the execution of
database slgnal a fallure of the pending orders

Primary Job Scheduler

Software- und Organisations-Service GmbH » www.sos-berlin.com

1.12.1.1 Conditions for Operating a JobScheduler Cluster

. All the JobSchedulers use the same database - Oracle, DB2, MySQL and Postgres databases are supported.
. The JobSchedulers must all use the same configuration file or an exact copy of the configuration file.

. The primary JobScheduler and the backups in the cluster are all started using the same JobScheduler ID.

. All the JobSchedulers - that is, the primary and the backups - must be started using -exclusive_.

1.12.1.2 Starting a JobScheduler Cluster

The JobSchedulers which form the cluster are to be started in arbitrary series. The active (primary) JobScheduler is
the first one to be started without the -backup_option set.

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 148

1.12.1.3 Command Line Parameters

The following command line parameters configure a JobScheduler as a member of a backup cluster:

. -exclusive_specifies that the JobScheduler is a member of the backup cluster.

. -backup_specifies that a JobScheduler is to operate as a backup. Should this parameter not be set, then the
JobScheduler is defined as being primary. Note that there can be more than one backup JobScheduler -
should the active JobScheduler fail, then all the backup JobSchedulers have the same start priority.

. -backup-precedence_is used to set the order in which backup JobSchedulers are made active. Should the
active JobScheduler fail, then the JobScheduler with the smallest backup-precedence will become active.

1.12.1.4 Stopping a JobScheduler in a Backup Cluster Using Web Interface Functions

Job processes which are still running are allowed to finish when a JobScheduler is stopped. New processes are not
started. The -timeout_=<value> parameter can be used to specify a time after which running job processes are
forced to stop immediately.

1.12.1.4.1 Stopping all the JobSchedulers in a Backup Cluster

A cluster is stopped in that the "terminate cluster" command is called from the JobScheduler Web Interface. This
command stops all the JobSchedulers in the cluster.

The corresponding XML command is <terminate all_schedulers="yes">

1.12.1.4.2 Stopping all the JobSchedulers in a Backup Cluster Using Timeout

The JobScheduler Web Interface "terminate cluster within 60s" command is used to stop all the JobSchedulers in a
cluster. This stops all the JobSchedulers in the cluster. All processes running are stopped within 60 seconds.

The corresponding XML command is <terminate all_schedulers="yes" timeout="60">

1.12.1.4.3 Restarting all the JobSchedulers in a Backup Cluster

All JobSchedulers in a cluster are stopped when the "terminate and restart cluster" command is called from the
JobScheduler Web Interface. This causes all the JobSchedulers in the cluster to be stopped and then restarted.

After all the JobSchedulers have been restarted, then the primary JobScheduler is the active JobScheduler.

The corresponding XML command is <terminate all_schedulers="yes" restart="yes">

1.12.1.4.4 Restarting all the JobSchedulers in a Backup Cluster with Timeout

All JobSchedulers in a cluster are stopped when the "terminate and restart cluster" command is called from the
JobScheduler Web Interface. This causes all the JobSchedulers in the cluster to be stopped and then restarted.
The JobScheduler which was active before the restart will become active once more. All job processes still running
will be stopped after 60 Seconds.

Atfter all the JobSchedulers have been restarted, then the primary JobScheduler is the active JobScheduler.

The corresponding XML command is <terminate all_schedulers="yes" restart="yes" timeout="60">

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 149

1.12.1.4.5 Stopping the Active JobScheduler: Backup JobSchedulers Remain Started but Do Not
Become Active

An active JobScheduler is stopped by calling the "terminate” command from the JobScheduler Web Interface. This
command has no effect on backup JobSchedulers, they will not take over operation because no failure of the
primary JobScheduler has occurred.

The corresponding XML command is <terminate>

1.12.1.4.6 Restarting a Primary JobScheduler: Backup JobSchedulers Remain Started but Do Not
Become Active

A JobScheduler is stopped and then restarted by entering the "terminate and restart" command in the
JobScheduler Web Interface.

The corresponding XML command is <terminate restart="yes">

1.12.1.4.7 Restarting a Backup JobScheduler

A JobScheduler is stopped and then restarted by entering the "terminate and restart" command in the
JobScheduler Web Interface.

A backup JobScheduler restarted in this way will remain inactive after the restart. However, an inactive primary
JobScheduler running in a cluster will become active after this command.

The corresponding XML command is <terminate restart="yes">

1.12.1.5 Reactivating a Primary JobScheduler

1. The primary JobScheduler is started. As a backup JobScheduler is already running, the primary JobScheduler
does not become active and does not take over processing.

2. The Backup JobScheduler is then restarted (using "terminate and restart"). As the primary inactive
JobScheduler becomes active, as soon as no other JobScheduler is active, it then takes over processing.
Note that should there be more than one primary JobScheduler, the JobScheduler which will become active is
not fixed.

1.12.1.6 Handing Over Processing to a Backup JobScheduler

The primary JobScheduler is stopped "fail-safe" from the Web Interface. A running backup JobScheduler then
becomes active and takes over processing. When, however, the primary JobScheduler is stopped using restart,
then it is not clear whether or not a backup JobScheduler will become active or whether the primary JobScheduler
will remain the active processor.

1.12.1.7 Behavior As A Windows Service

. Stopping by way of the Windows Service Panel has the same effect as using the <terminate> command. That
is, the backup JobScheduler(s) do not become active. Should, however, a backup JobScheduler be stopped
and there be an inactive primary JobScheduler, then this primary JobScheduler will become active.

. Restarts of the Windows service are comparable with use of the <terminate restart="yes"> command. A
primary JobScheduler and not the backup JobScheduler(s) becomes active.

Software- und Organisations-Service GmbH April 2016

Configuring the JobScheduler 150

1.12.1.8 Behavior When Restarting a Computer

. When a computer (on which the active JobScheduler is running) is shut down, then a backup JobScheduler
running on a second computer (continue_exclusive_operation="yes") will become active.

. When both a primary and a backup JobScheduler are restarted, e.g. by server reboot, then it can be that the
backup JobScheduler starts first. In this case, the backup JobScheduler does not become active immediately
but first of all waits to see if it receives a heartbeat from the primary JobScheduler. Only when the backup
JobScheduler has not received a heartbeat within 60 seconds does it start processing. This is comparable
with the standard backup JobScheduler behavior in the event of a missing heartbeat.

1.12.1.9 Making an Inactive Backup JobScheduler the Active Primary JobScheduler

When an active backup JobScheduler has been stopped and is then restarted, then it will be inactive. Should in this
situation the primary JobScheduler then be unavailable for a longer period of time, the backup JobScheduler must
then be started as the primary JobScheduler. This can be done by using the start exclusive parameter instead
of start when calling the jobscheduler. cmd shell script.

1.12.1.10 Start Script Commands

The JobScheduler starts as specified in the Setup when the [start] parameter is given, without any further
information.

The following additional commands are available for the operation of a JobScheduler in a backup cluster:

. terminate_cluster Shuts down all the JobSchedulers in a backup cluster

. restart_cluster Restarts all the JobSchedulers in a backup cluster. The primary JobScheduler active before
the restart remains active.

. terminate_fail-safe Stops a JobScheduler. Another (inactive) JobScheduler in the cluster becomes active.

. start -exclusive Starts a primary JobScheduler in a backup cluster.

. start -exclusive -backup Starts a backup JobScheduler in a cluster.

. start -exclusive -backup -backup-precedence=[n] Starts a backup JobScheduler in a cluster with the
backup-precedence [n].

1.12.1.11 Further reading

Watchdog-Monitor for Cluster Failover.

Software- und Organisations-Service GmbH April 2016

Jobs 151

2 Jobs

2.1 What is a Job?

A job determines the program to be executed, its run time and what is to be done in the event of an error occurring.
Further, any parameters to be used, pre and post processing, locks preventing simultaneous access to a file and
possible follow-on jobs may also belong to a job configuration.

A Job is defined in the XML configuration using <job>_.

2.1.1 Job Configuration

The XML configuration of a job can be carried out in the central start configuration file, (which is usually
. /config/scheduler. xml) or in a separate configuration file in the configuration directory which is monitored by
the JobScheduler (usually . /config/1live) - see also (page 88)

2.1.2 Implementation

The JobScheduler starts executable programs and can start individually implemented jobs, which use the
JobScheduler's API.

Executable Programs

Executable programs may be implemented as executable, shell scripts or as batch files. This includes programs,
such as JavaScript, VBScript, Perl, PHP, Ruby etc. for which an interpreter needs to be started with the executable
program file, Java classes can be started using the Java Virtual Machine (JVM) configured for the JobScheduler.

Executable programs can be configured using the following elements:

<script language="..">

<script language="shell">

The JobScheduler creates a shell for the execution of the program.

Example:

<job name="simple shell">
<script language="shell"><![CDATA[
echo hello world
call my script.cmd
my prog. exe
11></script>
</job>

<job name="simple command">
<script language="shell">
<include file="my script.cmd"/>
</script>
</job>

Software- und Organisations-Service GmbH April 2016

Jobs 152

Commands for the command line can be directly included as content of the <script> elements. Alternatively, shell
scripts can be specified using <include>.

<script language="java">

The JobScheduler starts a JVM for the execution of the Java class.

Example:
<job name="simple java">
<script language = "java"
java class = "sos.scheduler. ftp. JobSchedulerFTPReceive" />
</job>

Implementation with the JobScheduler API

Job implementations can use the JobScheduler API - for example for logging, informing per e-mail, calling job, task
and order objects, etc.

The JobScheduler does not start these scrips per interpreter (see above) but instead makes use of a
sub-programme interface that is provided by the respective the script language. The JobScheduler then makes the
objects and methods of its API available to such languages.

Java

A Job implemented with the Java programming language inherits from the abstract class sos.spooler.Job_impl.
(see Javadocs for details).

The Java Interface provides additional classes in the same manner as the COM, JavaScript and Perl interfaces.
This allows the implementation of jobs in these languages.

The address of the implemented class is specified in sos. ini (section| java] , entry class path= ..).

JavaScript and JScript (page 354)

JavaScript is available in the SpiderMonkey implementation (http://developer.mozilla.org/en/docs/SpiderMonkey) in
the JobScheduler installation package for all platforms.

Microsoft JScript is available on Windows platforms.
VBScript

Microsoft VBScript is available on Windows platforms.
Perl

Perl is generally already installed on Unix platforms. The JobScheduler installation programme attempts to
configure the sub-programme interface to an existing Perl installation.

A Perl implementation such as that from http://www.activestate.com, can be installed if required.
COM (page 155)

A job can be implemented in any program language as a COM-Server (for Windows). Further information can be
found in the section on Spooler Scripts (page 155).

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Jobs

153

2.1.3 The Status of a Job

Jobs have one of the following statuses:

pending No task is running. This is the starting status.

running At least one task is running.

stopping The job is stopping. The JobScheduler will not start another task and all current
tasks are being stopped. As soon as all tasks are stopped, the job status changes to
stopped.
See also the command: <modify job cmd="stop">..

stopped No tasks are running and no further tasks will be started by the JobScheduler.

See also the command: <modify job cmd="stop">..

read error

The reread command has caused an error and the job is unusable as the program
code cannot be read from the underlying file.

See also the command: <modify job cmd="reread">..

error

The JobScheduler does not start any new tasks after an error has occurred.

2.1.4 Changing the Status of a Job

The <modify job>_elementis used to change the status of a job. The JobScheduler has a built-in HTML interface
(page 180) with provision for the necessary operations.

2.1.5 Starting a Task

The <run time>_parameter is used in the configuration to specify whether a task should be started once or

repeatedly.

Both the <start job>_and the Job. start() APl method can be used to start a task.

A task will start automatically when no other task is running and when one of the following conditions are true:

. At the start of a <period>_, when repeat= Orsingle start= is specified in the period.

. When a previous run set Task. repeat_and the repeat time has been reached.

. When a previous run caused an error and Job. delay after error_has ended.

. When the interval after the end of the previous task defined in <period repeat="..">_has ended.

. When directory monitoring (page 168) is active and a change occurs in the monitored directory.

In addition, a task will start when:

. An order for the job is present and the number of tasks running is less than that specified in <job tasks=".."

> .

A task will only start when it has a start time (at) or:

. the job has not been stopped,
. a period for the current time is given,
. and the (Job. delay after error_) delay after an error is not active.

Software- und Organisations-Service GmbH

April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Jobs 154

2.1.6 Locks

Jobs can be given locks, in order to stop the simultaneous processing by two tasks.

2.1.7 Directory Monitoring

The JobScheduler can start a job when a change takes place in a monitored directory. Further details can be found
in the chapter Directory Monitoring (page 168).

2.1.8 Monitor Scripts

A monitor script can be configured for a job . The JobScheduler calls the functions of this script at the beginning
and end of a task and before and after the spooler process() _methods.

The monitor can be defined using the <monitor> element.

Example:
<job name = "simple ftp"
<params>
<param name = "ftp host" value = "localhost"/>
<param name = "ftp user" value = "anonymous"/>
<param name = "ftp password" value = "anonymous"/>
</params>
<script language = "java"
java class = "sos.scheduler. ftp. JobSchedulerFTPReceive" />
<monitor>
<script language="javascript"><![CDATA[
function spooler task before() {
var today = yy = mm = dd = "";

today = new Date();
yy = today.getYear() + 1900;
mm = today. getMonth() + 1;

dd = today. getDate();

if (parselnt(mm) < 10) mm = "O0" + mmy

if (parseInt(dd) < 10) dd = "0" + dd;

spooler task. params.set var("ftp file path", "“test " + yy + "-" 4+ mm + "-" +

dd + "\.csvs$");
return true;
}
]]1></script>
</monitor>
</job>
The monitor script uses a standard job included with the JobScheduler installation package to transfer a file per
FTP. Thereby the job parameters for the name of the file to be transferred is dynamically created from the current
date.

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Jobs 155

2.2 Implementation of JobScheduler scripts as COM Classes

In previous versions of the JobScheduler, jobs were created using a Scripting Engine and the code (text) of the
scripts (VBScript, JScript, PerlScript) were directly entered in the <script> element.

A JobScheduler job can also be implemented as a com class. This class can be implemented in every language
which supports com, such as C#, C++, Delphi and VisualBasic (VB6 or VB.net). The com class can, however, also
be implemented with VBScript, JScript und PerlScript using the "Windows Script Component”.

This class allows use of job, thread script or JobScheduler script methods as follows:

spooler init()
spooler exit()

spooler open()
spooler close()
spooler_process()
spooler on success()

spooler on error()

Each method is optional. Should a method not be implemented, then the existing JobScheduler script procedure
will be followed.

In addition, this class should provide a method with which the JobScheduler context can be assigned:
spooler set context(context)
This context is a com object (1pispatch) with the following properties:

log
JobScheduler

job
task

These properties deliver the spooler log, spooler task, spooler job and JobScheduler objects, known from
the JobScheduler-Script.

Similarities between script in the Scripting Engine und the com class:

. the (spooler init(),spooler open() etc.)requests are the same in both
. these calls are optional in both

Differences between Script in the Scripting Engine and the com class:

Skript using the Scripting Engine COM Class

Source code is included in the configuaration (or Implementation is independent of the JobScheduler.

externally using <include>). Any language which generates COM classes with late
binding (1pispatch) can be used.

Software- und Organisations-Service GmbH April 2016

Jobs 156

The context makes the following predefined variables The JobScheduler makes the spooler set context()
available to the script: spooler log, JobScheduler, method of the com object available.
spooler_jok>andspooler_task.

A script can be used reused by way of <include> at The class can be used at different stages. Seperate
different stages when it is saved as a file class objects are made.

Declaration in the JobScheduler Configuration

A job registered with a com class can be addressed by its class name:

<job name="delphijob">
<script com_class="my spooler job class"/>

</job>

The unique cISID can be specified instead of the class name:

<job name="delphijob">
<script com_plass="{F44FF458—D4DE—4cef—AAlA—CCC507346581}"/>

</job>
Direct DLL Specification

When a DLL requires a further DLL which cannot be loaded, then Windows stops the JobScheduler with a
message box. The JobScheduler continues only after the ok button is clicked. Specification of the DLL is therefore
not suitable for unsupervised use.

Should the com class not be registered, then the DLL can be directly specified. The class is then defined as a
hexadecimal CLSID.

<job name="delphijob">
<script com class="{xxxx-xx-...}" filename="my delphi.dll"/>

</job>
Example:
The com class is specified using the "Windows Script Component”. The source is:

<?XML version="1.0"?>

<component>

<registration
progid = "Joacim. Component"
classid = "{F44FF458-D4DE-4cef-AA1A-CCC507346581} "
description = "Joacims Script Component"
version = "i"

/>

<public>

Software- und Organisations-Service GmbH April 2016

Jobs 157
<method name="spooler set context"/>
<method name="spooler init"/>
<method name="spooler exit"/>
<method name="spooler open"/>
<method name="spooler process"/>
</public>
<script language="VBScript">
<! [CDATA[
dim spooler log
dim spooler task
dim i
function spooler set context(c)
set spooler log = c.log
set spooler task = c.task
spooler log "Script component spooler set context"
end function
function spooler init
spooler log "Script component spooler init"
end function
function spooler exit
spooler log "Script component spooler exit"
end function
function spooler open
spooler log "Script component spooler open"
i =3
end function
function spooler process
spooler log "Script component spooler process i=" & i
i=1i-1
Software- und Organisations-Service GmbH April 2016

Jobs 158

spooler process = 1i > 0

end function

11>
</script>
</component>

This source code is written in the job. wsc file and registered as a COM-Server with the following command:

regsvr32 job. wsc

The server can be specified in the JobScheduler configuration with its class name:

<job name="component">
<script com class="Joacim. Component"/>

<run_time once="yes"/>
</job>
or with its unique CLSID:

<job name="component">
<script com class="{F44FF458-D4DE-4cef-AAlA-CCC507346581}"/>

<run_time once="yes"/>
</job>
Unix

Building a Unix port is possible in principle, despite com. The early binding would be used instead of the late
binding through the IDispatch interface. This means that:

. the binding is made during compilation via header files instead of using 1Dispatch.

. the com class inherits fron the JobScheduler.Job class

. all requests are implemented. Requests are no longer optional. (The error code E_NOTIMPL can be returned)

. Depending on the available resources, the Delphi com support may or may not be usable. Should Delphi
support not be available, then direct com requests will be used instead. This means that the return of an error
message will be coded with setErrorInfo() .

. the (shared object) module will not be registered, but will be directly specified using <script filename="..."/
>,

. a job implementation modified for Unix will also run under windows. A #i fdef will most likely not be required.
The job will run more quickly because of the early binding.

2.3 Locks

Locks in the JobScheduler stop the execution of a job, as long as a particular lock has been acquired by one or
more jobs. Locks are available for individual jobs and for jobs in job chains. Should a job be waiting for a lock to be
released (lock contention), then it will be automatically started as soon as the lock has been freed.

An example problem: jobs use a database, and a further job alters the database. However, this can only be done
when the other jobs are not running.

Software- und Organisations-Service GmbH April 2016

Jobs 159

2.3.1 Lock Configuration

Locks must first of all be declared before they can be acquired by jobs:

<config>

<locks>

<lock name="Iock name"/>
<lock name="lock name2"/>

</locks>

The locks to be used must also be declared for each job:

<job>

<lock. use lock="lock name"/>
<lock. use lock="lock name2"/>

Locks can be used exclusively and non-exclusively. When a lock is used non-exclusively, it is possible to limit the
number of non-exclusive acquisitions. The default setting for lock use is exclusive acquisition.

The JobScheduler does not start a job when a lock is used which has not been declared.

Careful: Lock names are case-sensitive!

A lock is acquired when a task starts and is freed when the task ends. An exclusive lock allows only one task.
Exclusive Locks

Exclusive locking is where a task which acquires a lock does not allow any other task access to the lock.
Declaration:

<config>

<locks>

<lock name="lock name"/>
</locks>

Use:

<job>

<lock. use lock="lock name"/>

2.3.2 Non-Exclusive Locking

A lock can be non-exclusively set and removed by more than one job.

Software- und Organisations-Service GmbH April 2016

Jobs 160

The number of non-exclusive uses of a lock can be limited:

<lock name="lock name" max non exclusive="2"/>

<job name="my database job">

<lock. use lock="lock name" exclusive="no"/> ..</job>

<job name="my other database job">

<lock. use lock="lock name" exclusive="no"/> ..</job>

<job name="switch database">

<lock. use lock="lock name"/> ..</job>

The first two jobs can be run simultaneously, but cannot be run at the same time as the third job, which has
exclusive use of the lock.

2.3.3 Locks in Job Chains

As locks are acquired by tasks, they can also be used in job chains, when the individual job node tasks end after
execution. Ideally, in this situation, the idle timeout attribute would be set to 0.

2.4 External Job Processing with Agents

Jobs can be processed by a JobScheduler running on a remote computer if it is configured as an Agent. Only
Agents are able to receive and execute commands from a Main JobScheduler.

Characteristics of JobScheduler Agents:

. Agents do not require a live folder.

. Existing local jobs (if existing) are not executed. This is also true for JobScheduler default jobs such as
scheduler_event_service.

. If the execution of a local job is suppressed a message will be logged.

. Internal jobs (scheduler_file_order_sink and scheduler_web_service) are not executed.

. Only Agents can receive and execute remote commands from a main JobScheduler. Trying to execute a
remote command at a JobScheduler that is not configured as Agent, an error message will be logged.

Remotely processed jobs behave, with respect to the JobScheduler which is processing them, just the same as
locally processed jobs. The only difference is that the processing load is transferred from the initiating to the
processing JobScheduler.

This also means, for example, that all API calls refer to the local JobScheduler object.

The job log information, its end state and any possible error information will be forwarded to the initiating
JobScheduler.

Software- und Organisations-Service GmbH April 2016

Jobs 161

2.4.1 Application

In most cases an Agent will be installed on a different computer to the one on which the initiating JobScheduler is
installed.

Example uses:

1. Using remote processing to balance load.

2. Software installations can be used which are not available on the computer on which the initiating
JobScheduler is installed.

3. Hardware components such as printers can be used which are only available on a different computer to the
one on which the initiating JobScheduler is installed.

2.4.2 Requirements for External Job Processing

1. Firewall Settings

The initiating JobScheduler must be able to communicate with the Agent. All the firewall security settings must
be set accordingly. So that communication to the Agent can take place, the port of the Agent must be opened
in the firewall.

In the opposite direction, task(s) must be able to communicate with the initiating JobScheduler using the
port(s) <= 59999 counting downwards pro task being processed. The number of firewall ports which are
opened must correspond with the maximum number of tasks expected.

2. Security Settings in the JobScheduler Configuration
The Agent must obtain authorization from the initiating JobScheduler's security element.
Example:
<security ignore unknown hosts="no">

<allowed host host="123.456.89.1" level="all"/>
</security>

3. Both JobSchedulers must be started.

2.4.3 Configuration

The job definition is saved in the configuration file of the initiating JobScheduler.
In order to be able to have a job processed on an Agent, the following configuration is required:

. A process class must be created and the <process class remote scheduler=""> attribute set in this class.
This causes all the jobs which are allocated to this process class, to be carried out remotely.

Example:

<process classes>
<process class name="remote"
max processes="3"
remote scheduler="remoteHost: 4445"/>

Software- und Organisations-Service GmbH April 2016

Jobs 162

</process classes>

. The job must be allocated to the process class,

see <job process class="..">

2.4.4 Monitor Scripts

Any monitor scripts belonging to a job will be processed on the Agent. For example, this test script returns the
name of the remote computer:

function spooler process before() {
spooler log.info("host: tcp port:" + spooler.tcp port);

var localhost = new java. net. InetAddress. getLocalHost() ;
hostname = localhost. getHostName() ;

ip = localhost. getHostAddress() ;

spooler log.info("==>" + hostname + ":::"+ ip);

return true;

2.4.5 The Context of API Calls

All API calls relate to the initiating JobScheduler. However some methods return values relating to the Agent and
not to the initiating JobScheduler.

. Spooler. directory

. Spooler.log dir

. Spooler.ini path

. Spooler.include path

2.4.6 Configuration Files

All settings are read by the initiating JobScheduler.

However, some settings are taken over from the Agent and not from the initiating JobScheduler:

. sos.ini (Section [javal, entry javac=...)
. factory.ini (Section [spooler], entry tmp=...)

. <config java_options="...">

. <config java_class_path="...">
. <config include_path="...">
2.4.7 Log Files

Log files are saved in the files of the initiating JobScheduler. This applies to the order log as well as the task log.
Output to stdout and stderr is written into the log files of the initiating JobScheduler. Other log output, which the
JobScheduler writes, is written to the log output of the Agent.

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Order processing and File Monitoring 163

3 Order processing and File Monitoring

3.1 Orders and Job Chains

An order is the instruction set describing how a job chain should execute a series of jobs. An order can be carried
out immediately or when a preconfigured event takes place. Example events are times of the day, days of the week
or files being added to a directory.

A job chain can be seen as an assembly line on which orders are run. The orders are processed by the individual
machines of the assembly line one after the other. A job comprises exactly one step in the processing of an order.
After a job has been completed, the state of the order is changed, which in turn affects the next step in the job
chain. (For example, after completing one job, an order could be added to the queue for the next job.) This process
will be repeated until the order reaches the end of the job chain.

An order has an identifier, which is valid within that job chain, and a readable title. The order also has a status,
which changes after the processing of each job. An order can contain parameters, which are handed on to all the
jobs in the job chain. It can also carry a load - i.e. an individual XML document, which it makes available to the
jobs.

Orders allow jobs and job chains to be reused: an order can be allocated to a single job chain and define the time
at which the job chain starts execution. This configuration is often used, when each job is only used in a single job
chain and the parameters are set for each job.

It is also possible to configure more than one order for the same job chain. In this case, the orders can be given
different parameters, which are then handed over to the jobs, so that the same jobs can be used for different
purposes.

See the order_class.

Orders can also be transferred using TCP and the <add order>_command.

Further, the JobScheduler HTML interface (page 180) provides operations with which orders can be manually
started.

3.1.1 Job Chains

Job chains define a series of jobs, whose execution is activated by an order. Job chains specify job dependencies
for the successful and incorrect execution of the jobs. They can be restarted - that is, the JobScheduler saves the
state of an order within a job chain in a database. Should the processing of an order be broken off at a particular
job in a job chain, on restarting, the JobScheduler is able to restore the order at the job within the job chain, at
which processing was broken off.

Job chains are described in the Job chain_and Job chain node_classes.

A job is made order controlled using the <job order="yes"> setting.

In order that a job can be used in a job chain, it should be defined using <job order="yes">_. If this is not done,
the jobs can be separately called up as standalone jobs.

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Order processing and File Monitoring 164

3.1.2 Order Queue and Tasks

Every job which is order controlled has an order queue in which orders which are to be processed are collected.
The JobScheduler starts processing an order as soon as it is added to the queue and the <run time>_element
allows it to start. Should there be a number of orders in the job queue and the job allows multiple tasks, (_<job
tasks="..">), then the JobScheduler will process the tasks in parallel.

The JobScheduler hands an order over to a task by storing the order in the Task. order_method and calling up the
spooler process() _method. The spooler process() method ends with either a true or false result, which, in
turn, determines whether or not an order is processed by the next job in the job chain (see Job chain_).

3.1.3 Recognition of Double Orders

When an order is added to the job queue, the JobScheduler checks whether an order with the same id has already
been entered (only, however, when the order id has been set). Should the order queue or job chain already have
an order with the same id, then the already existing order will be overwritten. Should the new order have a different
priority to the original, then the JobScheduler will take this into account.

3.1.4 Directory Monitoring with File Orders

See Directory Monitoring with File Orders (page 165) for information about orders which are created from the files in
a directory.

3.1.5 Priority

Order priority is set using order. priority_. Orders with a higher priority are put by the JobScheduler at the front
of the queue.

3.1.6 Ending Tasks

The JobScheduler lets tasks exist as long as the <run time>_parameter is valid. They then have the status
running waiting for order.

The maximum time which the JobScheduler will wait before a task is automatically ended is set using <job
idle timeout="duration">_. This time should be set to a value such as 30 sec., so that resources can be set
free.

Should the JobScheduler require to start a task for which no more process class resources are available, then it
automatically looks for another task of the same process class with the running waiting for order status,
which it then terminates.

Tasks can be terminated using Task. end() , <kill task>_and <modify job cmd="end">_.

A task ends when spooler process() _is implemented. The order is then given the successor state.

3.1.7 Accelerated Order Processing

Jobs which are order controlled are prioritized. The <job priority="..">_element contains an arbitrary value
which defines the position of orders of the same status in the order queue. This value must not exceed the limit
defined by the <config priority max="..">_attribute.

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Order processing and File Monitoring 165

The JobScheduler gives orders a higher priority the further advanced they are in the job chain. This helps reduce
congestion and means that jobs which are started first will be more quickly completed. It is as though the machines
at the end of an assembly line were running more quickly than those at the beginning.

Jobs which are order controlled have, in general, priority over jobs which are not order controlled.

3.1.8 Database

More information about the longer term storage of order queues and the order history is to be found in the section
on databases (page 136).

3.2 Directory Monitoring with File Orders

File orders can be used when a job chain is to process files from a directory. A file order is an order containing a
reference to a file. The JobScheduler monitors a directory and creates a new file order for each new file in the
directory.

<job_chain name="my job chain">
<file order source directory="path"/>
<file order source directory="other path" regex="regex"/>
<job chain node state="100" job="job 1 error state="error"/>
<job chain node state="200" job="job 2 error state="error"/>
<file order sink state="ok" remove="yes"/>
<file order sink state="error" move to="/errorpath.../ "/>
</job_chain>

See <job chain>_(page 47), <file order source>_(page 35)and <file order sink>_(page 34).

3.2.1 File Order Sources

A file order source <file order source>_is used to monitor a directory. A file order is created when a file with a
name corresponding to the optional regular expression is added to the directory.

<job chain ..>
<file order source directory="." regex="."/>

A file order is an order_with the following properties:

Order. state
The status of the order is determined either by the status of the first job in the job chain or the job with the <

file order source next state=".."> state.

Order. id
The order identifier is a path, consisting of the directory name, as specified in the order source and the file
name.

Order. params . Variable set. value()

contains the path, the same value as order. id_. This variable, which is reserved for the JobScheduler,
defines an order as a file order.

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Order processing and File Monitoring 166

3.2.1.1 Execution Sequence for File Orders

The oldest file (defined as that with the oldest last change date) is handled first.

3.2.1.2 Multiple Order Sources

A job chain can have a number of order sources. The JobScheduler handles all orders in chronological order as
described above.

3.2.2 File Monitoring With a File Order

The JobScheduler removes a file order when the corresponding file is no longer in the monitored directory and:

the file order has not been handed over to a job

[warn] SCHEDULER-982 File has been removed, so the file order is being removed too

the file order is blacklisted
[info] SCHEDULER-981 File on blacklist has been removed
File orders being executed are not affected.

This check is carried out when:,
. the JobScheduler reads the directory being monitored,

. it hands the file order over to a job for the first time.
3.2.3 File Order Sink: Removes or Moves a File

After an order has been completed, the corresponding file can either be moved or removed. States defined <
file order sink>_are end states.

Should, however, the file already have been removed, the JobScheduler issues a warning and the file order is
completed.

[warn] SCHEDULER-339 File does not exist and can therefore neither be moved nor removed:

Should it not be possible to either move or remove the file, then it is added to the blacklist.

3.2.3.1 Moving a File

<file order sink state="." move to="directory path">

A file in the target directory having the same name will be overwritten without warning.

3.2.3.2 Removing a File

<file order sink state=".." remove="yes">

Software- und Organisations-Service GmbH April 2016

Order processing and File Monitoring 167

3.2.4 Blacklist

Should the file still exist after a file order has been completed (and reached an end state), then the JobScheduler
sets the order on the blacklist.

[warn] SCHEDULER-340 File still exists. Order has been set on the blacklist
It remains there until:
. the JobScheduler determines that the file has been removed from the directory
[info] SCHEDULER-981 File on blacklist has been removed

. the <remove order>_command has been carried out.

This stops the file immediately creating a new file order.

3.2.5 Directory Errors

Should an error occur when a directory is being monitored - for example, because the directory has been
uncoupled - then the JobScheduler gives out a warning and sends an e-mail according to the settings in
factory. ini _(section[spooler]).

The JobScheduler regularly attempts to restart the monitoring. In doing so it ignores error messages. The intervals
in which it does this is set using <file order source delay after error=".">_. Should a directory become
readable once more, then the JobScheduler sends an appropriate e-mail and the following message:

[info] SCHEDULER-984 Recovered from previous error in directory

3.2.5.1 Errors While Creating a File Order

Should it not be possible to create the corresponding file name for an order - (because the path is too long for the
database column) then the JobScheduler notes the path in order to avoid repeating the error message each time
the directory is read. It then continues after issuing the following message:

[warn] SCHEDULER-346 Due to previous error the path will be ignored:

3.2.6 When is a Directory Read?

As soon as the first job to create an order is ready to be carried out for the first time, the JobScheduler will read the
relevant directory (within any constraints set using regular expressions) and creates the file orders

Should the directory contain more files than allowed by <file order source max="..">_, then a list of the rest files
is held by the JobScheduler in memory. This list is then used to create the remaining orders at a later point in time.
The relevant messages here are:

The JobScheduler re-reads a directory when:

. all the files from the first job have been handed over,
. the JobScheduler is ready for a further order,
. and the period set by <file order source repeat=".."> has expired.

Software- und Organisations-Service GmbH April 2016

Order processing and File Monitoring 168

3.2.6.1 Directory Monitoring on Microsoft® Windows®

The JobScheduler is able use the operating system to monitor directories on Windows systems. A signal causes
the JobScheduler to read the directory before the end of the period. This means that the JobScheduler can
immediately react to a new file.

This does not mean that monitoring of a directory on another computer can be switched off using the setting <
file order source repeat="no">_. The Windows directory monitoring stops when a directory is removed and
recreated. See also Microsoft's Article 188321: FindFirstChangeNotification May Not Notify All Processes on File
Changes. The inquiry interval should be used to regularly restart the monitoring of a directory.

3.2.7 Order Controlled Non-API Jobs (<script language="shell">)

The JobScheduler API (Application Programme Interface) is a way of allowing program code to control the
JobScheduler. XML jobs, or jobs which cause an executable file to be started are examples of non-API jobs - i.e.
jobs which do not use the API.

The file path is contained in the environment variable.

3.3 Directory Monitoring

A job which processes files laid up in a directory can be used for directory monitoring. The request
Job. start when directory changed() _causes the JobScheduler to start a task as soon as a change occurs in a
directory.

Requests can be repeated for a number of directories.

A request can be included in the JobScheduler script (Element <script> in <config>_) or in a Job itself (in
spooler init() _). In the latter case, the job itself must be run before the request can be implemented (see <

run time once="yes">).

3.3.1 Definition of a Directory Change:

When a file or a subdirectory is added, deleted or renamed.

3.3.2 The Regular Expressions Filter

The method Job. start when directory changed() _is used to define a regular expression (according to POSIX
1003.2). In this case the JobScheduler only sees a directory as having been changed when, after the change, it
contains a file or subdirectory whose name fits the regular expression.

3.3.3 The Directory in Which a Change has Taken Place

When a number of directories are being monitored, the Task. changed directories() request returns the names
of the changed directories, separated by semicolons.

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Order processing and File Monitoring 169

3.3.4 The Files in the Directory

Task. trigger files_returns the paths corresponding to the regular expression (if present). These paths are put
together from the directory and file name.

For non-API jobs (_<script language="shell">_) the paths are provided in the environment variable
SCHEDULER TASK TRIGGER FILES.

3.3.5 Errors when Directory Monitoring

The JobScheduler interprets the situation of a directory no longer being accessible (i.e. it had been deleted or is no
longer available) as a change and starts a task.

A repeated Job. start when directory changed() _request leads to an error.

3.3.6 Example

The following example shows an example configuration for a job which processes all the files in a directory and
then deletes them. (Careful when testing - the job really deletes files!)

<?xml version="1.0"7?>
<spooler>
<config>
<process classes/>

<jobs>
<job name="import">

<script java class="spooler job.Import"><![CDATA[
package spooler job;

import java. io.File;
import sos.spooler. *;

public class Import extends sos.spooler.Job impl

{
Stringl] paths;
int index;

public boolean spooler open()

{

spooler log.info("changed directories=" +
spooler task. changed directories());

spooler log.info("trigger files=" +
spooler task. trigger files());

paths = spooler task. trigger files().split(";");
index = 0;
return index < paths. length;

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Order processing and File Monitoring 170

public boolean spooler process()

{
File file = new File(paths[index++]);
spooler log.info("Processing file " + file);
file. delete();
return index < paths. length;

}

}
]1></script>

</job>
</jobs>
</config>
</spooler>

3.4 Distributed Orders

3.4.1 Distributed Order Processing

A JobScheduler cluster can be used to distribute orders for processing on more than one node. This feature can be
used for load balancing - reducing processing times by using more hardware to process an order.

All the JobSchedulers in a cluster indicate their availability by sending out heartbeats (to the database). At the
same time they check the availability of all the other JobSchedulers in the cluster. Should a JobScheduler
determine that the heartbeat of another JobScheduler has been missing for a longer period of time (approx. 1-2
minutes), then it takes over the processing of the orders started by the missing JobScheduler.

The conditions under which a JobScheduler cluster can be used for distributed orders are schematically
represented on the following diagram and described in the next section.

Software- und Organisations-Service GmbH April 2016

Order processing and File Monitoring 171

Availability: Load Balancing

Load Balancing with multiple Job Schedulers

JOBSCHEDULER

Network Storage
Distributed Job Scheduler Distributed Job Scheduler
Job Configuration Job Configuration
JOBSCHEDULER JOBSCHEDULER
Enqueued Orders Enqueued Orders
Job History Job History
Order History Order Higtory IUBSEHEDULER

¥ Job configurations are ¥ The distributed Job Schedulers

loaded from a network storage, concurrently execute orders that

alternatively from a clustered are synchronized by the database

database (Managed Jobs) ¥ An arbitrary number of distributed
8 Distributed Job Schedulers cmw’ a0 Job Schedulers can be operated in

use the same job configurations parallel

and database

Software- und Organisations-Service GmbH » www.s0s-berlin.com

Distributed orders can be processed from different JobSchedulers on their way along a job chain. The handing over
of the processing of an order to another job node on another JobScheduler is schematically illustrated in the
following diagram:

Software- und Organisations-Service GmbH April 2016

Order processing and File Monitoring 172

Availability: Load Balancing

Distributed Job Chains JOBSCHEDULER

An order which starts in a Job Chain on one Job Scheduler may pass through multiple Job Schedulers:

Distributed Job Scheduler <)cb_chain name="balance" distributed="yes"> Distributed Job Scheduler
<job _chain node state="first" jobe"jobl"/>

<job_chain node state="second" job="jcb2"/>
<job _chain node states"third" jobm"job3"/>
@‘ / J;::;ZEE:; node state="last" job="3job4"/> \ @
JOBSCHEDULER : JOBSCHEDULER

—
-

e g

Software- und Organisations-Service GmbH » www.s0s-berlin.com

3.4.1.1 The Requirement for using Distributed Orders

. All the JobSchedulers in the cluster must use the same database.

. The JobSchedulers must all use the same configuration file or an exact copy.

. All the JobSchedulers must be started with the same JobScheduler ID.

. The JobSchedulers must all be started with the -distributed-orders_option.

. All the JobSchedulers must have access to any resources required by jobs run on a distributed job chain - for
example, monitored directories. Directories which are used by all the JobSchedulers must be mounted (or
linked) on the same path on all systems.

Software- und Organisations-Service GmbH April 2016

Order processing and File Monitoring 173

3.4.1.2 Starting a JobScheduler Cluster for Distributed Orders

The JobSchedulers making up the cluster can be started in any order. Any JobScheduler belonging to the cluster
can be removed or added as required whilst the cluster is in operation. When a JobScheduler is removed from a
cluster it should, where possible, be stopped (terminated) normally, to allow any orders which are being processed
at the time to be completed.

3.4.1.3 Generation of Distributed Orders

Distributed Orders can either be generated by the <add order>_command or by directory monitoring. A persistent
order can not be used as a distributed order.

3.4.1.4 Distributed Orders Using add_order

Either the <add order>_eAPI| command or the Job chain. add order() _iAPI function can be used. Neither the

JobScheduler to which the command is sent to nor the JobScheduler on which the command is carried out is
important - the order will be made available to the whole cluster for processing.

3.4.1.5 Distributed File Orders

Distributed File Orders are configured in a distributed job chain using <file order source>_. Each JobScheduler
in the cluster monitors the relevant directory or directories and can create file orders. A file order can be processed
by a different JobScheduler to the one that created the order.

3.4.1.6 Stand-Alone Jobs with Distributed JobSchedulers

Independent jobs which do not process orders are processed in a JobScheduler cluster by the JobSchedulers with
which they were configured.

3.4.1.7 Load balancing methods

The method used for load balancing can be set using the scheduler.order.distributed.balanced global parameter:

. Overload balancing:
With this method, an additional JobScheduler of the cluster takes over the execution of a distributed order
when the JobScheduler initially processing the order is working at maximum capacity - i.e. the allowed

number of processes reaches a maximum value. This is the standard balancing method used by the
JobScheduler.

see also <job tasks=".."> (page 42) and <process class attribute max processes=".."> (page 68).

. Equal distribution:

With this method, distributed order tasks are allocated equally to the JobSchedulers in a cluster.

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Protocols and Forwarding of E-mails 174

4 Protocols and Forwarding of E-mails

4.1 Logs

The directory in which the JobScheduler writes its log files is specified using the -10g-di r_option.
Entries are numbered - see »Messages« (page 234)
Main Log Files

All log files are summarized in the main log file. The name of the main log file is made up from the scheduler id, the
date and the time thus: scheduler-2004-08-24-104111. log.

Job Protocols

The JobScheduler records a job log file containing the task start information and the orders processed - for
example: job. my job. log

The JobScheduler changes characters in job names, which cannot be used in file names, into

Task Protocols

A task log file is written for every task the JobScheduler starts. The name of the task log file is made up of the job
name and, should more than one task be allowed at once, the task id. E.g. task. my job. log and
task. a_job. 1234. 1og. Note that task log files with a task-id are deleted after completion of the task.

Order Protocols

The JobScheduler compiles an order log file containing the results of all tasks processed in the course of an order.
The name of this log file is made up from the name of the job chain and the order id - e.g.:
order. my job chain. 9876. log. Order log files are deleted after individual orders are completed.

scheduler.log

The JobScheduler can write the scheduler. 1og as a debugging aid. The name of this log file is set using the
factory. ini (section [spooler] ., entry 1og= ..) parameter. "factory. ini" is used in this documentation for the
file name entered here.

For further information see the List of Log Categories.

4.1.1 Log File Size

The detail with which log files are noted (error, warn, info, debug to debug9) can be set using -10g-level_and
Log. level

4.1.2 Message Codes

Messages are allocated codes, such as scHEDULER-900. All codes can be found in the List of JobScheduler
Message Codes (page 234) .

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Protocols and Forwarding of E-mails 175

4.1.3 Full Disc Drive

An error occurs when insufficient disc space is available when a log file is opened. Should it not be possible to
open the main log file then the JobScheduler aborts.

The JobScheduler stops should insufficient disc space be available to continue writing a log file. However, it will still
respond to TCP, UDP or HTTP commands

In this situation, the <modify spooler> command will only be carried out to a limited extent.

The JobScheduler can be made to continue using the <modify scheduler cmd="continue"/>, once disc space
has been made available.

The above procedure does not apply to the scheduler. 10g file, for which errors are ignored.

4.1.4 Database Storage of Protocols

The JobScheduler can store task and order log files in the history under the following conditions:

. operation with a database (page 136),

. activation of the history function using the factory. ini (section[spooler], entry history= ..)), setting,

. use of the factory. ini (section[spooler], entry history with log= ..) setting for the Task Protocol,

. use of the setting factory. ini (section[job] , entry history with log= ..) for distinct jobs,

. use of the factory. ini_(section[spooler], entry order history with log= ..) setting for the Order
Protocol.

4.1.5 Program Interface

The log files and settings available are set using the Log_class.

4.1.6 E-mail Forwarding

Task log files can be sent per e-mail. Further details can be found in e-mail (page 175).

4.1.7 Protocol Display

See the <show state>_(page 210), <show task>_(page 211) and <show history>_(page 206) commands.

Protocols can be viewed real-time when the JobScheduler HTTP-Server (page 180) is called up using a web
browser.

4.2 Sending E-mails

4.2.1 E-mail Settings

General E-mail settings are made as follows: factory. ini_(section[spooler], entry smtp= ..)

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Protocols and Forwarding of E-mails 176

factory. ini (section[spooler],entrylog mail subject= ..)

factory. ini (section[spooler],entrylog mail from= ..)

factory. ini (section[spooler],entrylog mail to= ..)

factory. ini (section[spooler],entry log mail cc= ..)

factory. ini_(section[spooler], entry 1og mail bcc= ,)_

and settings for particular jobs are made thus: factory. ini _(section[job] ., entry log mail subject= ..)
factory. ini (section[job],entrylog mail from= ..)

factory. ini (section[job],entry log mail to= ..)

factory. ini (section[job],entry log mail cc= ..)

factory. ini_(section| job] , entry 1og mail bcc= ,)_

Or in the application programming interface:
The spooler log_class provides the Log. mail_object, which in turn makes the Mail_object available. This allows
sender, recipient, re., etc. to be set using the methods of the Mai1_object.

Example (in Java)

spooler log.mail().set to("admin@xxx.com");

4.2.2 E-mails Sent after Task Completion

On completion of a task, the JobScheduler can send an E-mail containing the task protocol.

The following settings are used to determine the general conditions under which a protocol should be sent on
completion of a task: factory. ini _(section[spooler], entrymail on success= ..)
factory. ini (section[spooler],entrymail on process= ..)

factory. ini _(section[spooler], entrymail on error= ..)

The following settings are used to determine the conditions for a particular job: factory. ini_(section[job] , entry
mail on success= ..)
factory. ini (section[job],entrymail on process= ..)

factory. ini (section[job],entrymail on error= ..)

and in the application programming interface:
The Log. mail it_request is used to determine whether the JobScheduler sends a protocol on completion of a
task.

4.2.3 Settings Priorities

1. The job script uses the Mai1_class to make settings.
Should an error occur, the JobScheduler overwrites the mail subject - i.e. the job Mail.log mail subject
setting.

3. The e-mail XSLT stylesheet (<config mail xslt stylesheet="..">_), can make used to make the settings.

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Protocols and Forwarding of E-mails 177

4. Empty settings are filled with values from

factory. ini_(section[job]) and

factory. ini (section] spooler]).

4.2.4 E-mails Sent when the JobScheduler Terminates because of an Error

The settings for e-mails sent when the JobScheduler terminates because of an error are to be found in section
[spooler] of the factory. ini file.

Should a error occur before the -ini_option can be carried out, the JobScheduler uses the (default) settings from
the factory. ini file under its original name.

When running as a service or daemon the JobScheduler will send an e-mail containing the relevant error message,
should an error occur which is so serious that the JobScheduler must abort.

The JobScheduler sends an e-mail should a database error occur. Further e-mails about errors caused by
subsequent attempts to reopen the database are not sent.

An e-mail is also sent should the JobScheduler have to stop using a database after an error.

4.2 .5 Installation with JavaMail

The following files must be added to the c1ass path directory when an e-mail is to be sent using JavaMail.

sos.mail.jar (is delivered with the JobScheduler)
mail.jar (Sun Microsystems, Inc.)
smtp.jar (Sun Microsystems, Inc.)

(

activation.jar Sun Microsystems, Inc.)

See sos. ini (section| java] . entry class path= ..).

4.3 Log Categories

category default’

all All categories (with exception of explicit categories)
com COM-Operations

com.invoke Calling a COM object method

env Environment variables

exception Particular error codes

exception.® default All error codes

exception.D310 explicit End of file

exception.D311 explicit Expression not found

factory DocumentFactory

Software- und Organisations-Service GmbH April 2016

Protocols and Forwarding of E-mails

178

category default’

factory.parameter

factory.processor Factory Processor (hostole.dll)

file

file.directory

file.mmap mmap()

hostole HostOLE calls (with exception of the factory
processor)

ini Windows call GetPrivateProfile()
Read the .inifile: GetPrivateProfile() .

java Java

jdbe JDBC Calls

mail

mutex explicit Mutual exclusion locks, blocking for thread
serialisation

object_server JobScheduler interface for tasks running in their
OWN processes

object_server.call Method Call

object_server.continue

object_server.Invoke COM operation

object_server.push Stack-Operation for nested method calls

object_server.Queryinterface COM operation

object_server.wait

odbc ODBC calls

rtf RTF Processor

rtf.learn Learned (unknown) RTF codes

rtf.map_next_line Positions of script line numbers found in RTF
documents

rtf.merge Merge different templates

scheduler implicit JobScheduler

scheduler.call implicit Start and end call of a job method, e.g.

spooler_process()

scheduler.cluster

Cluster operation

scheduler.directory

Open a directory

scheduler.file_order

<file_order_source>

scheduler.http

HTTP server

scheduler.log

Access to protocol files

scheduler.nothing_done

When a job is idle

Software- und Organisations-Service GmbH

April 2016

Protocols and Forwarding of E-mails

179

category default’

scheduler.order implicit Operations on orders (temporary payload setting)

scheduler.service implicit Windows service controller

scheduler.signal

scheduler.wait The JobScheduler enters the waiting state

scheduler.xml XML/DOM operations

socket Socket operations (network)

socket.accept System call accept(): accept TCP connections

socket.close System call close(): close socket

socket.connect System call connect(): establish TCP connection

socket.data explicit Data from recv() and send()

socket.listen System call listen(): waiting for TCP connection
request (listening)

socket.recv System call send(): receive file

socket.select System call select(): waiting for TCP result

socket.send System call send(): send file

socket.setsockopt System call setsockopt()

socket.shutdown System call shutdown(): end connection

sossql SQL-Processor (file type sossql)

sossql.get_key Operation get_key()

spidermonkey The Spidermonkey JavaScript implementation

spidermonkey.callback explicit Spidermonkey call backs

spidermonkey.idispatch explicit COM object management

windows

Betriebssystem Microsoft Windows

windows.PeekMessage

Aufruf PeekMessage()

Many of the entries made in the log file (scheduler. 10g) are categorised. These categories are used to regulate
whether or not an entry is made in a log file.

A log category is specified in front of the file name, with a ">" symbol inserted between the category and the file
name. Multiple categories are separated by an empty space. For example (in an .ini file): 1og = scheduler. *

socket. * >c:/tmp/scheduler. log.

The special category a11 selects all categories other than those which must be explicitly selected.

Log file categories are organised in hierarchies. Categories can be selected together with their subcategories by
appending an asterisk (". ") to the category name thus: scheduler. *.

See also the commands:

Software- und Organisations-Service GmbH

April 2016

Communication and Operation 180

5 Communication and Operation

5.1 HTTP Server and Web Services

5.1.1 Web Services

The JobScheduler can encapsulate the execution of jobs and job chains as web services. To do this, the
JobScheduler responds to SOAP queries received by way of its own built-in HTTP server.

Web services are installed using the <web service>_element.

The use of the JobScheduler as a web service, together with example configurations is described in the »\Web
Service Tutorial«.

5.1.2 Operation with a Browser

The JobScheduler can be operated using its own built-in HTML interface and its own HTTP-Server in conjunction
with a standard browser (Microsoft Internet Explorer and Firefox). This interface is accessed using the address
http: //localhost: 4444, where 1ocalhost can also be another computer name and 4444 the TCP port number
configured for the JobScheduler.

See <config tcp port=".."> (page 21).
See factory. ini (section| spooler], entry html dir= ..) (page 100).

The user interface is described in the "Built-In User Interface" section of this chapter (below).

5.1.3 Security

The JobScheduler only allows TCP and HTTP connections to computers which have been given appropriate
permissions with the <allowed host>_parameter.

In addition, HTTP authentication can arranged using the <http. authentication> element.

5.1.4 Show Protocols in a Browser

A protocol can be viewed whilst it is being written by the JobScheduler. The current status is always shown. The
following URLs are used:

The functions necessary for this are provided by the JobScheduler's HTML interface. The JobScheduler uses the
following URLs for protocols:

main protocol http: //localhost: 4444/show_log?

job protocol http: //localhost: 4444/show_log?job=jobname

task protocol http: //localhost: 4444/show_log?task=task id

order protocol http: //localhost: 4444/show_log?job _chain=jobchainsorder=order id

Software- und Organisations-Service GmbH April 2016

Communication and Operation 181

where localhost is 1ocalhost or 127.0.0.1 or the hostname of the server on which the JobScheduler is running.

5.1.5 Job Descriptions
The job description from <description>_can be called up using the following URL:
http: //localhost: 4444/job _description?job=job

Note that it is assumed here that the description is coded in HTML.

5.1.6 Built-In Graphical User Interface

The JobScheduler can be operated using its own, built-in, web-based graphical user interface (GUI). Instructions
for accessing this interface were provided in the "Operation with a Browser (page 180)" section of this chapter
(above).

This interface is automatically installed and updated with the JobScheduler installation package.

The JobScheduler GUI is configured in the custom. js datei, which is to be found in the JobScheduler
installation directory\config\html directory

This interface is intended for the operation of the JobScheduler - i.e. starting, monitoring and stopping the

JobScheduler itself, jobs & job chains, orders, and any locks and JobSchedulers operating in a cluster.

This interface should not be confused with the JobScheduler Editor (page 120), which is a GUI used to configure
the JobScheduler itself, jobs & job chains, orders using XML. (Note that the JobScheduler Editor can be called up

from the JobScheduler GUI. This is described below.)

The JobScheduler GUI should also not be confused with the Managed Jobs Administration interface, which is a
part of the JobScheduler Managed Jobs package. The Managed Jobs Administration interface is a GUI for the
creation and monitoring jobs, job chains & orders and comes with a user administration. Further information about
the Managed Jobs Administration interface can be found in the »Managed Jobs Documentation«.

When first opened, the JobScheduler GUI appears as shown in the screenshot below and comprises three areas:

. An upper menu bar, where the general configuration of the interface (language & update) is carried out; any
monitoring functions the JobScheduler is to carry out is shown and the configuration of the JobScheduler itself
in the XML configuration file (page 6) is shown.

Note that here the XML configuration file is shown "read-only" - to change the configuration, the JobScheduler
Editor (page 120) or an alternative XML editor should be used which has access to the JobScheduler
installation directory.

. A central menu and status bar, providing access to the most important JobScheduler menus and status
information about the operation of the JobScheduler.

The "Update periodically" checkbox and the "Update" button are used to update the information shown in the
web interface either at regular intervals (when the checkbox is selected) or manually, as required (using the
button). The interval with which the regular updates of the interface are carried out is set using the Settings
dialog, which is accessed via the "Extras" button.

. A working area initially showing a list of the jobs configured for the JobScheduler, which can be used to
provide information about other aspects of the JobScheduler operation such as the job chains, process
classes and locks by selecting the appropriately named menu tabs. Note that, should, for example, no locks
be configured then the "Locks" menu tab will not be shown.

Software- und Organisations-Service GmbH April 2016

Communication and Operation

182

=2)[>< | scou=

Bearbeiten @nsicht Eavoriten Extras z | @>sSnoan 1=

~ Scheduler localhost: 4434 l I

| &% - B9 - &5 - - sewe - ¥ Exwas -

Documentation s ==

racnu |
D: tocathost
O jobs running

—_ upaate |
e IOBSLCHEDULER
Can L PR s R P
O need process O tasiks orders

T~ Update (every 5s)

state: running
O stopped

monior |

Time:
Scheduler Start-Time:

Configura:

raenu |
20071001 11:17:59
2007-10-01 11:15:25

JOBS ETeT PROCESS LOCKS
CHAINS CLASSES

= Show tasks

I CLUSTER I

I= Show order jobs

Job Time Steps Next start/ Orders

el I TernaTict. on e Site vl
Without start ime be. L S : =

Use u B n o

dzsplay manuaiiy

ler_check__sanity

schedul
pending

Scheauler ftp_send
pending

Send files by FTP
Without start ime

er_ftp_send_service Send files by FTF

scheaus.
pending O orgers

Szaius bar shows Job Scheduler
sSfatus information

~_sfip_ Receive files by SETE

a1,
pending Without start ime
Scheduler ftp_receive
pending

Receive files by FTF
without start ime

Scheduler ftp_receive service
pending

Receive files by FTF
O orders

List of jobs di:

er scp_receive Receive files by SCP

scheauw.
pending wWithout start ime title, state and nexzt. sta(z t‘me
sScheauler scp_sena
pending

Send files by SCP
Vithout Start ime

sScheduler_sfip_send Senan

by

Fertia

[l el el e S 5~ e

| #<ico%s -

The main menu for the operation of the JobScheduler is shown in the next screensho

windows Internet Explorer

http:/flocalhost: 44447

|*>|[< | Jsocal=

Bearbeiten Ansicht Eavoriten Extras 2

| S snaor =

~ Scheduler localhost: 4444 I I

| = - 69 - &5 - - -sere -

Documentation m — I~ Update (every 5s) Update

ro,

racno |

Showjob dependences Q

18 v Job chain dependencies

e JOBSLCHEDIULER
wersion: 2.0 187 5268 (2007-09-28 01:11:42)
O need process O tasks 1 orgers

Time:
Scheduler Start-Time:

= Configuration

racnu |
2007-10-01 11:17:59
2007-10-01 11:15:25

S

LOoCKs I CLUSTER I

s
=

ps MNext start s Orders

Pau
Contnues
Terminate
Terminste within ~so=
Terminate and restar
e iats o et C e

-

Main menu offers operations 1o access.
jlogs and fo conitrol the Job Scheduler.

e.g. to suspend. resuime and ternminate the.
service

b ckc Sanity
O without start ime

Abort immediately
Abort immediately and restart dfiles by
e ot s tart e

< files by FTF
O O orders

Feive files by SFTF
Without Start ime

Scheduler ftp_receive
pending

Receive files by FTF
without start ime

o

files by FTP
O orders

pending o

Receive files by SCP
Without Start ime

sScheduler _scp_receive
pending
sScheduler_scp_send
pending

Send files by SCP
without start ime

sScheduler_sftp_send Send files by SFTP

T T IC3 & tnternet

=1
=

[#iic0%% -

Detailed information about the state of one of the jobs listed in the main working area of the

interface can be

obtained by clicking on the name of the job. This causes the right hand part of this area to divide and additional
areas showing status information about the job, about the task and about the taks queue to be displayed as can be

seen in the screen shot below:

14 - Windows Internet Explorer =l ><]
= ~ | — hrtrp:filocalhost:aaaa ~1 %> < | [scocal = -
| Dater Bearbeiten ansicht Eavoriten Extras 2 | ©&snaan =yt
D < ~— Scheduler localhost: 4334 | 1 [& -~ &5 - db - [-rsSelke - EHExwras - >
Documentation s =3 I~ Update (every Ss) | Update raonitor || Connguration |
[raenu | ey IOBSCHEDULER |
D tocar state: running version: 2.0.187.5268 (2007-09-28 01:11:42) Time: 2007-10-01 13:08:18
0 jobs running O stopped © need process O tasks 1 orders Cs Scheduler Start-Time: 2007-10-01 11:15:25

sSchedauler_ftp_sena
pending Shows dertailed job information
Jike state (pending). Iast error
message. next start time and the

number of jobs steps

scheduler_fitp_send_serv
pending

ser_sftp_r

JOBS JoB PROCESS LOCKs CLUSTER (==
CHAINS CLASSES
IS Show order jobs [Show tasks Job menu | JoB
Job Time |Steps Next start/ Orders s uler_ftp_send Send files by FTP
sScheduler_check_sanity Check Sanity Staltes pending
pending o without sfart ime state text:
=

SieE Btare 2007 3004 142000 (AT

steps: tasks: O
i st ot Srror By D i
from: Scheduler@localnost.com smtp: 3PXP

to: ap@localhost.com

Hide

Job menu

pending

sScheduler_ftp_receive Receive files by FTP

pending wWithout start time
¥ _ftp_x _servi files by FTP
pending O O orders

sScheduler_scp_receive

Receive files by SCP
pending o

Without start time
sScheduler_scp_send
pending

Send files by SCP
without start ime

sScheduler_sftp_send Send files by SFTP

TASK

in process since:
running since:

TASK QUEUE I TASK HISTORY I

Fertia

1a Enqueued Start at
4594 13:07:27 2007-10-01 13:27:27 (-19:08min)
I — R
I =5 I I L3 €9 1nternet [Fiico% -

The job status area also contains a menu providing the main commands necessary for controlling the job as shown

in the next screen shot:

Software- und Organisations-Service GmbH

April 2016

Communication and Operation 183

Ihost:4444 — Windows Internet Explorer S (=t 3 |
~ | heep:iiocatnostiaaaar 115>l ><|Jscca= = |-
[627 Boibenn freite Esvevien | Exbes 2 || @@ enean B3
e e T e — | | &= -5 - T iiXrsese - SFewmos - 7
Documentations = = T~ Update cevery Ss) | Upgate rtonitor || connigura:
tenu | s JOBSLCHEDULER reno |
ID: localhost sState: running wersion: 2.0.187 5268 (2007-09-28 01:11:42) Time: 2007-10-01 13:08:138
O jobs running O stopped O need process O tasks 1 orders Scheduler Start-Time: 2007-10-01 11:15:25
JOBS JoB PROCESS Locks CLUSTER = Hide
criams CLASSES
I= Show order jobs & Show tasks JOB Job menu
Job Time | Steps [Next start / Orders ba fites by FTE
scheduler _check_sanity Check Sani
pending o nithdat start ime
scheauler ftp_sent o:00 1M
pending tasks: O
Scheduler Ttp_sem Job menu offers operations fo access [o S mpe. o @locsinestcom
pending log files and to control jobs, e.g. start. =
scheauler_sfip_rec SIOP. remove. suspend and resume.
pending Job execution TasK
scheauler_fip_rece
pending
Scheauler ftp_receive Serncs HECSwe RS By FTPE
pending O © orders
2 e e rask auEus | Tas<nsvorv |
pending 0 wwithout start time
1a Enqueucd |Startat
scheauler_scp_send Sena files by SCP e :
S oh ks O Without start time 4594 13:07:27 2007-10-01 13:27:27 (19:08min)
scheduler sftp_send Send files by SETP =
| e 3 [€D Trternet [#ico% -

The "Show description" item in the menu opens a new browser window containing the job description. Job
descriptions such as the one shown below can be written with the Job Editor. This editor combines documentation
of the job, its configuration and a generate function, where the job can be newly generated after changes to its
configuration have been made. It is so integrated in the JobScheduler installation that the JobScheduler
automatically takes account of changes in a job configuration without having to be restarted.

The documentation for the Job Editor can be read in the Job Documentation Editor tutorial.

SOS Scheduler Job Documentation — Windows Internet Explorer -

—lcoi>x<]
= 1 v =l -_— = =
Job Name/ Title JobSchedulerFrPSend Sends files by TP
Order Control This job is triggered by orders or by standard job starts.
Tasks unbounded
Script - Language: jav=
- MName of Java Class: sos.scheduler.ftp.JobSchedulerFTPSend
- — Res —=: sos.scheduler.jar
Configuration This job can be used standalone or as an order driven job. Parameters can be accepted

as job or as order parameters.
Job frp__host Default: ———
ESsanaarars Host or IP address to which files should be transferred.

frp_port Default: 21
[eptional] Port by which files should be transferred.
ftp__user Default: anonymous
Job descriptions are User name for authorization at the FTP server.
available for standard 5 Baesword Setoeat: -
Jobs from the Job [optionall Password for authorization at the FTP server.
Scheduler distribution ftp_account Default: ———
[eptional] Account for authorization at the FTP server.
ftp_keep connection Default: false
[optionall Tries to process sewveral orders with the same connection.
The connection parameters need to be the same.
ftp_transfer_mode Default: binary
Tranfer mode can be esither ascii or binary .
ftp__passive__mode Default: O
Passive mode is often used with firewalls. Vvalid values are O
or = - =1
T [3 [internet [Fioose -

Information about tasks carrying out a job is shown in the task area of the interface as shown in the next screen
shot:

Ihost:4444 — Windows Internet Explores _ i — (i ><]

[— heepisilocaihose:aaaar 115> |]Jscca= = [-|
| Datei Bearbeiten Ansicht Eavoriten Extras z | &>Snaar =y
e e T — | | &= -5 - T iixrsese - SFewos - 7
Documentations == == I~ Update (every 5s) | Update tionsor |
renu | e IOBSLCHEDULER
ID: localhost sState: running wersion: 2.0.187 5268 (2007-09-28 01:11:42) Time: 2007-10-01 14:40:11
1 jobs running O stopped O need process 1 tasks 1 orders Scheduler Start-Time: 2007-10-01 11:15:25
JOBS o8B PROCESS Locks CLUSTER = s =
criAiNs CLASSES
= Show orderjobs & Show tasks Job menu | JOB Job menu
Job Time Steps Next start/ Orders Scheduler_fip_send Send files by FTP
Scheduler_check_sanity Check Sanity state: running
penaing T Al i G State tesct: = files transferred
Scheauler ftp_send senanidybrFre next start: 2007-10-02 14:30:00 23h)
4 files transferred Hesste = —
e e R ey legievet info mail on error mail on warning to: ap@localnost com
tasks as rthe time when the task was ot SCOSMSERoCINCET CORN. S SOXD
Scheduler te_send = enquewued and when it was started I
| s e
e __STip_ T Receive fifes by SFTFP — =
SEeET 0 without start ime 4596, pid 4228 (start cause: gueue_af), starting, O steps
sScheduler_fip_receive Receive files by F TP =~ Process since:
pending © without start ime running since: 2007-10-07 14:40-11 (1s)
5 2 = cnaueues at 2007-10-01 14:40-11 (is)
Schechier T _sccaive Scnmce Eetolrs Sles by EEE logjever info mail on error mail on warning to: ap@localhost.com
BcTchg o O orclers from: scheduler@localhost.corm s=mip: apxp
scheduler_scp_receive Receive files by SCP
cenmiod o MHhoarstatnms TASK QUEUE I TASK HISTORY |
scheduler_scp_send Send files by SCP —
pending © without start ime ~ | © engueued tasks 1 ~1
Fertio = 2 [€® Trternst [FLio0%% -

A task menu is provided as shown in the following screen shot:

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/de/scheduler_editor/sos_help.htm

Communication and Operation 184

Scheduler localhost:4444 — Windows Internet Explorer

5 —iof><]
http: fflocalhost: 447 =5
| Datei Bearbeiten Ansicht Eavoriten Extras z | &>Snaar =y
L <8 ~— Scheduler localhost: 4444 1 | - i Seite - i Extras - >
Documentation s == W T Update (every Ss) Update Monitor l Configurs:
racau | e IOBSLCHEDULER Menu |
1D: localthost sState: running wersion: 2.0.187 5268 (2007-09-28 01:11:42) Time: 2007-10-01 14:40:11
1 jobs running O stopped O need process 1 tasks 1 orders Scheduler Start-Time: 2007-10-01 11:15:25
JOBS o8B PROCESS Locks CLUSTER = IO =
criaiNs CLASSES
= Show order jobs [Show tasks Job menu | JOoB Job menu
Job Time Steps Next start/ Orders Scheduler_fip_send Send files by FTP
er_check_sanity Check Sani state: running
pending © I nithout start ime state texct: 4 files transferred
schedauler_ftp. send Sendfiles by FTE e 2007-10-02 122000 c2am>
4 files transferr Hesste e
running = logtevet |nfo mail on error mail on warning to: ap@localhostcom
ok asse Task menu offers operations 1o access. e e e L
- . log files and to terminate and kill tasks
endin 7
e o e I e = |
1. __Sfip_i files by SF TP = =
EeET 5 without start ime 4596. pid 4228 (start cause: gueue_af). starting, O steps
sScheduler_ fitp_receive Receive files by FTF in process since. L ol e dintely
pending O wWithout start time running since: Z2007-10-01 14:20-11 (1s)
: = = cnaueues at >007-10 01 122011 (i)
Scheduler_fip_receive scrvice Receive files by FTP o sweate s e e e Bt N
pending o O orders from: Scheduler@localhost.com smtp: apxp
scheduler_scp_receive Receive files by SCP
cenod O MHhoarsatnms TASK QUEUE I TASK HISTORY |
scheduler_scp_send Send files by SCP —
pending © without start ime ~ | © enqueued tasks 1 =
=0 2 [€® trternst [Sioo% =
ler localhost:4444 - Windows Internet Explores =T 1|
o = |~ neepisflocaihostiaaaas 1.2
| Datei Bearbeiten Ansicht Eavoriten Extras z | & snsar 1=
8¢ 4fr |~ Scheduler localhost:4444 | | [&£ -6 - &b - Xsere - EFexwas - =
Documentations == = I~ Update cevery Ss) | Upgate aontor || Configuration ||
renu | ——— I OBSLCHEDIUILER raenu |
D: tocathost state: running wersion: 2.0.187.5268 (2007-09-28 01:11:42) Time: 2007-10-01 14:51:41
1 jobs running o stopped O need process 4 tasks 1 orders Scheduler Start-Time: 2007-10-01 14:51:03
JOoBs So8 PROCESS Locks CLUSTER (== Hide
criAiNS CLASSES
IS Show order jobs [Show tasks Job menu | JOoB Job menu
Job Time | Steps Next starts Orders Scheduler_ftp_send Send files by FTP
er_check_sanity Check Sanity State: pending
SEeE s O Without start time state text: fip processing failed: could not process file transfer: _error occurred
- S directory tmpAinboundsixx1l: 550 Cant create directory.
sSchedauler_ftp_send Send files by F TP e RS SO ortect
ftp processing failed: could not profess file transfer: ..error occurred creating error:
directory Ftmp/inboundsicx1l: 5SSO C4nat create directory. Permission denied okl
running 1 wWithout start ime Steps: 1 tasks: 1
Task 4599 s= 1 enging iog-lever info mail on error mail on warning to: ap@localhost.com
s from: scheduler@localnost.com smtp: apxp
pending
Di. 3 error mes. from
scheduler_sftp_r TASK
il task execution
scheduler_ftp_re in process since:
pending running since:
~_Ttp_ 1 .- i ive files by FTP
pending O O orders TASK QUEUE l TASK HISTORY I
e e e Receive files by SCP e o e |
pending 0 wwithout start time
scheduler_scp__send Send files by SCP vI
=0 [[&D Tnternst [#lio0% -~

If the JobScheduler is part of a JobScheduler cluster, providing backup, monitoriung and fail-over features, a
corresponding "Cluster" menu tab will be shown in the main working area of the interface. As can be seen in the

next screen shot, a button is provided to a menu for configuring cluster related aspects of the JobScheduler
operatlon

st:4344 — Windows Internet Explorer

T = |
~ [= retpiiflocalnostiaaaas =l |<>][><I|1 [=]=]
| Datei Bearbeiten ansicht Eavoriten Extras z | $&>Snaore eyt
¢ 4B~ Scheduler localhost: 4444 | | 1 [- &5 - db - [-rseke - EHExwras - >
Documentation s =i=3 W I~ Update (every Ss) L8] ate l%
tacau | = JOBSCHEDULER rmenu |
1ID: localhost state: running wersion: 2.0.187.5S268 (2007-09-28 01:11:42) Time: 2007-10-01 14:56:58
O jobs running O stopped O need process O tasks 1 orders Scheduler Start-Time: 2007-10-01 14:51:03
JOBS JOB PROCESS LOCKS CLUSTER
criams cLASSES
1 active Scr - ;] 2 ive This Scheduler is active and exclusive.
Detected Backup
URL Started at State Pid Last heart beat heart beats precedence
This Scheduler 14:51:03 (5:54min) active exclusive 9s ago (gocod) =3 o Cluster member rnenul
Attp ZAPXE 4445 14:56:43 (145) inactive backup st ss o 1 Ciuster member menu |
checking

Backup Job Schedulers on different server nodes check if the Primary Job
Scheduler is up and running. Fail-over is executed automatically showuld a
Primary Job Scheduler or server node rerminate unintentionally

| e I I I3 & tnternet [#i100%% -

=

The principles for using the JobScheduler GUI and which have been described in conjunction with the features
shown in the preceeding screen shots are followed for the aspects of the interface which have not been shown in
the screen shots. This means, for example, that use of the job chain part of the interface should follow intuitively.

Detailed information about the configuration and operation of the JobScheduler can be found in the following
sections of this documentation:

Software- und Organisations-Service GmbH April 2016

Communication and Operation

185

. The XML Configuration (page 6) of the JobScheduler.

. Jobs and Job Chains (page 151).
. Orders (page 163).
. Log files and errors (page 174).

. Error messages (page 234).

5.2 XML Commands

These commands can be transmitted using TCP (e.g. telnet), HTTP and using the Command line options -cmd_and
-send-cmd_.

Command Answer (packed in <spooler><answer>)

<add jobs> <ok>

<add order>

<ok> <order>

<job. why> <job>
<job chain. modify> <ok>
<job chain node. modify> <ok>
<kill task> <ok>
<licence. use> <ok>
<lock> <ok>
<lock. remove> <ok>
<modify hot folder> <ok>
<modify job> <ok>
<modify order> <ok>
<modify spooler> <ok>
<param> <ok>
<param get> <param>
<params> <ok>
<params. get> <params>
<process class> <ok>
<process class. remove> <ok>
<remove job chain> <ok>
<remove order> <ok>
<schedule. remove> <ok>
<scheduler log.log categories. reset> [<ok>
<scheduler log.log categories. set> <ok>

<scheduler log.log categories. show>

<log categories>

<show calendar>

<calendar>

<show history>

<history>

Software- und Organisations-Service GmbH

April 2016

Communication and Operation 186
Command Answer (packed in <spooler><answer>)

<show job> <job>

<show job chain> <job chain>

<show job chains> <job chains>

<show jobs> <jobs>

<show order> <order>

<show state> <state>

<show task> <task>

<start job> <ok> <task>

<terminate> <ok>

XML Elements

XML Element <add jobs>

Fom - ==== S s s E S S S S S SN E SN EEEEEEE s s s === 1
1<add_jobs > ,
, job :
1</add_jobs> .
Jobs are added with temporary="yes" and then started. Every job is deleted as soon as it ends.

Note that job names must be unique.

Parent Elements

<commands> -

XML Element <add order>

Fom - ==== S s s m m E N S S S SN SN E s s === 1
1<add _order .
! job chain = "name” :
: id = "I‘d" :
' replace = "yes|no" :
' priority = "number" :
' title = "text" :
: state = "text"” :
' web service = "name" :
' at = "timestamp" Order Starting Time .
. end state = "text" State before which the order should be successfully
: completed and should leave the job chain .
> :
: params Parameters :
, run_time ,
! xml payload XML Payload :
1</add order> :
Adds a new order.

Software- und Organisations-Service GmbH April 2016

Communication and Operation 187

When the <params> element is specified, then the JobScheduler creates a variable set_and makes it available in
Order. payload() _.

Example:

<add order job chain="job chain" id="1234" title="My First Order" state="100
at="now+3: 00" >

<params>
<param name="a parameter" value="a value"/>

</params>
</add_order>

Parent Elements

<commands> -
Attributes

job_chain="name"
The name of the job chain in which the order is being processed.
id="id"

The alphanumerical identification of the order. (Note that this parameter may not be set to id - which is an XML
reserved word.)
replace="yes|no" (Initial value:yes)

replace="no":Job chain. add order() Will be called.
replace="yes":Job chain. add or replace order() Will be called.

priority="number"

If two orders should be started at the same time then orders with a higher priority are processed first.

title="text"

The title of the order.

state="fext"

web_service="name"

When an order has been completed and the end of the job chain reached, it is then transformed with a style sheet
and forwarded to a Web Service.

See <web service> (page 83).

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Communication and Operation 188

at ="timestamp" (Initial value:now) Order Starting Time

"now", "yyyy-mm-dd HH: MM[: SS]", "now + HH: MM[: SS]" and "now + SECONDS" are possible.
See also order. at_.

end_state="fext" State before which the order should be successfully completed and should leave the job chain

See order. end state_.

XML Element <check folders>

P e e T T e e e e T e e e 1

1<check folders > </check folders> .

Checks the configuration directories for changes and updates the respective objects in the JobScheduler. On Win
dows operating systems changes to a directory are noticed immediately, on Unix systems this could take up to 60
seconds.

The command is available in the built-in HTML interface and is used. for example, when developing jobs for Unix in
order to shorten the waiting time until changes to the configuration are noticed by the JobScheduler.

Example:

<check folders/>

Parent Elements

<commands> -

XML Element <job. why>

e]
1<job. why

. job = "job_name"
1> </job. why>

This command determines possible reasons for a job not starting. As these reasons may not only lie in the job itself
but also in the objects that are related to the job (job chains, orders, etc.), this command generally returns an XML
element structure, referenced to the job. Common to all elements returned is that they have to end in one or more
obstacle elements. Each of these obstacle elements will specifa a reason why the job has not started.

Example:

<job. why job="mein job" />

Parent Elements

<commands> -
Attributes

job="job_name"

The Job Name

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Communication and Operation

189

XML Element <job chain. modify>

i i T T T I I e e e e

<job chain. modify
job chain = "name" Specifies a job chain
state = "state"

> </job_chain. modify>

Example:

<job chain. modify job chain="my job chain" state="stopped"/>

Parent Elements

<commands> -
Attributes

job_chain="name" Specifies a job chain

state="state"

Not possible with distributed job chains.
Possible values are:

Individual job nodes can be stopped with <job chain node. modify action="stop">_.

Messages
[ERROR] SCHEDULER-384 job_chain is distributed and therefore does not support operation "
[ERROR] SCHEDULER-405 Setting state=" is not possible while job chain has state "

XML Element <job chain node. modify>

e I I R e e e e e I T T T e e e e e e e T T

1<job chain node. modify

' job chain = "name" Specifies the job chain
' state = "state" Specifies the job chain node
' action = "action”

> </job chain node. modify>

r

Example:

<job chain node. modify job chain="my job chain" state="100" action="stop"/>

Parent Elements

<commands> -
Attributes

job chain="name" Specifies the job chain

Software- und Organisations-Service GmbH

April 2016

Communication and Operation 190

state="state" Specifies the job chain node

action="action"

Not allowed for distributed job chains.

Possible values are action="process", action="stop" and action="next state", as described for
Job chain node. action_.

A complete job chain can be stopped using <job chain. modify state="stopped"> .

Messages

[info] SCHEDULER-859 Due to action="next_state' the state " has been skipped. Next state is "

XML Element <kill task>

P e e T T T e e e e e e e e e e e e e I T 1

'<kill task :
' timeout = "duration_or_never" :
' job = "job_name" :
' id = "number” :
' immediately = "yes|no"” :
1 1
1 1

> </kill task>

Stops non-API tasks on Unix systems (_<script language="shell">_) together with any sub-processes. To do
this, the JobScheduler determines all sub-processes using the operating system "ps -ef" command and stops them
using sTGKILL. In addition, the process group task processes will be stopped.

Example:

<kill task job="my job" id="4711"/>

Example:

<kill task job="my job" id="4711" timeout="never"/>

Parent Elements

<commands> -

Attributes

timeout="duration_or_never"

The period of time allowed for a process to end after receipt of a SIGTERM signal. If the process does not end
within this time it will be killed with a SIGKILL signal.

Implementation on a JobScheduler Master

See How to Terminate Tasks for more information.

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Communication and Operation

191

job="job_name"

The job name.

id="number"

The task Id. (The attribute may not be named id - this term is a reserved word in XML.)

immediately="yes|no" (Initial value:no)

XML Element <licence. use>

1<licence. use
1

' key = "licence_key"

1> </licence. use>

Adds a license key.

Parent Elements

<commands> -
Attributes

key="licence_key" Lizenzschlussel

The licence key is added to the licence keyring.

See also sos. ini (section[1icence] , entry keyl= ..) (page 105).

XML Element <1lock>

P e e e e e e e e e e e i e T T R R e e e e e 1

1<lock

, name = "name"
! max non exclusive = "integer’
1> </lock>

A lock can stop two tasks from running at the same time.

See <lock. use>_(page 54) for information about the use of locks.

See also <lock. remove> (page 192)

The lock name
Restricting Non-Exclusive Use

Example:

<locks>
<lock name="switching database"/>

</locks>

<lock name="only three tasks" max non exclusive="3"/>

Software- und Organisations-Service GmbH

April 2016

Communication and Operation

192

Behavior with_<base>

Supplements the <1ock> element in the corresponding node of the basic XML configuration . Attributes specified

here have precedence over those entered in the basic XML configuration.

Parent Elements

<locks> -
Attributes

name ="name" The lock name

max_non_exclusive="integer" Restricting Non-Exclusive Use

The default setting is unlimited - which means that with <lock. use exclusive="no">_an unlimited number of

non-exclusive tasks can be started (but only one exclusive).

Messages

[ERROR] ~ SCHEDULER-887 More lock holders than new max_non_exclusive=: holders

XML Element <lock. remove>

P e e e e e e e e e e e i e T T R R e e e e e 1

1<lock. remove

! lock

1> </lock. remove>

Removes a Lock.
See also <lock>_(page 54).

Parent Elements

<commands> -
Attributes

lock="path" The lock name

The lock can only be removed when it is not active - i.e. it is neither allocated a task nor being used by a job (<

lock. use>_).

See also Lock. remove() _.

XML Element <modify hot folder>

P e i T T e e e e e e e e e e e e e e e e I I T 1

1<modify hot folder
folder
>
job
job chain
lock

= "path"

Lock Declaration

Software- und Organisations-Service GmbH

April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Communication and Operation 193

order
process class Process class
schedule

</modify hot folder>

= ———

This command adds a child element to a configuration directory. The file name is formed according to the rules for
file-based configuration of jobs and tasks (see (page 88)).

Already existing files will be overwritten.

The child element (only one can be specified) must possess a name= attribute, or, if it is an order, j0b_chain=and
id= attributes.

Parent Elements

<commands> -
Attributes

folder ="path" (Initial value:/)

Specifies the folder in which XML elements should be written. The JobScheduler creates this directory if it does not
already exist (including all higher level directories, if necessary to the root directory).

XML Element <modify job>

P e e i R e e e e e e e e e e e e e e e e i e T T T e e 1
1
1

<modify job
, job = "jobname"
. cmd =

1> </modify job>

Example:

<modify job job="my job" cmd="wake"/>

Parent Elements

<commands> -
Attributes

job="jobname"

The name of the job for which a command is intended.

cmd="cmd"

The following sub-commands may be used:

Software- und Organisations-Service GmbH April 2016

Communication and Operation

194

XML Element <modify order>

i e T e e e e e e T I T

y<modify order

run_time

1
1 1
. job _chain = "state” :
! order = "ig" :
. state = "state” :
' title = "title" :
' action = "action" :
! setback ="no" :
' priority = "number" :
' suspended = "yes|no" :
' at = "timestamp" :
' end state = "text” State before which the order should be successfully |
, completed and should leave the job chain ,
> :
! params Parameters :
' xml payload XML Payload :
: :
1 1
1 1

</modify order>

Example:

<modify order job chain="my job chain" order="42" priority="1"/>

Parent Elements

<commands> -
Attributes

job_chain="state"

The order job chain.

order ="id"

The order identifier (alphanumerical).

state="state"

Changes the state of an order and thereby its position in a job chain. Use of this attribute causes any setbacks (

Order. setback() _) made to be cancelled.

See also Order. state

title="title"

Changes the order title

See also Order. title

Software- und Organisations-Service GmbH

April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Communication and Operation 195

action="action"

action="reset" Resets the order: The order is returned to its original state, It is no longer suspended and setback
is cancelled. The next start time for the order is calculated as if the order had successfully completed the job chain.
This operation is only possible, when the order is not being carried out by a job.

Messages

[ERROR] SCHEDULER-217 order is being processed by task

setback="no"

Is effective after an order has been setback using order. setback() _. This command ends all delays set using <
delay order after setback>_, SO that the order may be immediately executed. Note that the counter used to
note how often an order has been setback remains unchanged.

See also order. setback() and <delay order after setback>_(page 32).

priority="number”

suspended="yes|no"

Suspends or restarts the execution of an order - see Order. suspended_.

at="timestamp"

"now", "yyyy-mm-dd HH: MM[: SS]", "now + HH: MM[: SS]" and "now + SECONDS" can be used.

Changes the next start time of a waiting order,

. whose Order. run time_has not been reached, or
. which has been setback using order. setback() _.

at="now" restarts an order which has been waiting because of order. run time Or Order. setback()

See also <add order at=".."> (page 13) and order. at .

end_ state="text" State before which the order should be successfully completed and should leave the job chain

See Order. end state..

XML Element <modify spooler>

e]
y<modify spooler

cmd

timeout
> </modify spooler>

I
o
3
<

r
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

The following sub-commands are not carried out after the JobScheduler has halted because of insufficient disc
space for a log file (<state waiting errno="..">_): pause, reload, terminate, terminate and restart,

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Communication and Operation 196

let run terminate and restart. On the other hand continue, abort immediately and
abort immediately and restart are immediately effective.

Example:

<modify spooler cmd="abort immediately and restart"/>

Parent Elements

<commands> -
Attributes

cmd="cmd"

The following subcommands are allowed:

timeout="int"

For cmd="terminate" and cmd="terminate and restart": the time the JobScheduler will wait before stoping
unterminated processes.

The default setting is an unlimited waiting time.

See spooler. terminate() _.

XML Element <param>

P e e e e e e e e T T T T I e e e I I T 1

value

See <params>_(page 66).

Defines the individual parameters for the JobScheduler, a Job or an Order. In general all parameters are available
with the API calls spooler. variables() _, Task. params() _respectively order. payload() _or in shell Jobs as
environment variable (with leading SCHEDULER_PARAM_)

Correspondent parameter in the JobScheduler configuration, at the Job and at the order are valid in the following

sequence:
. order
. job

. scheduler

The use of individual parameters beginning with scheduler. is not recommended as this name space is reserved
for the JobScheduler configuration settings.

The parameters can be overwritten and extended during run time.

See also variable set_class.

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Communication and Operation

197

JobScheduler Parameters

The following parameters can be used to configure the JobScheduler:

scheduler.varia
ble_name_prefi
X

SCH
EDU
LER

Prefix of the JobScheduler einvironment variables (for compatibility reasons to older
versions SCHEDULER_VARIABLE_NAME_PREFIX is allowed).

nced

scheduler.max_ [unli |Maximum size of the order logs in the database.

kbyte_of_db_lo |mitet

g_entry

scheduler.order. | TRU | Preserves the order parameters after the execution of the order.

keep_order_con (E

tent_on_resche

dule

scheduler.order. | FAL | TRUE: distributed order tasks are allocated equally to the JobSchedulers in a cluster..
distributed.bala |SE

FALSE: an additional JobScheduler of the cluster takes over the execution of a
distributed order when the JobScheduler initially processing the order is working at
maximum capacity - i.e. the allowed number of processes reaches a maximum value.

scheduler.agent
.keep_alive

Prevents connections between a JobScheduler Master and Classic Agent from timing
out. The value attribute sets the interval in seconds between keep-alive packets.
Keep-alive packets will not be sent if the parameter is not set or if the value attribute is
empty.

. SCHEDULER_VARIABLE_NAME_PREFIX

. scheduler.max_kbyte_of db_log_entry

. scheduler.order.keep_order_content_on_reschedule
. scheduler.order.distributed.balanced

. scheduler.agent.keep_alive

The JobScheduler Master and Classic Agent can be configured to prevent connections from timing out by
adding a scheduler. agent. keep_alive parameter to the <params> section of the Master's scheduler.xml
file. This file is located in the $SCHEDULER DATA/config folder, where $sCHEDULER DaTa is the directory used
for JobScheduler's configuration and log files.

Example:

<params>
<param name="scheduler. agent. keep _alive" value="300" />
</params>

. The value attribute sets the interval in seconds between keep-alive packets.

A duration lower than 30s will be silently replaced by 30s.

. Keep-alive packets will not be sent if the parameter is not set or if the value attribute is empty.

. The keep-alive parameter will be forwarded to the Agent along with other task configuration parameters
for use when the Agent initiates a connection.

. Keep-alive packets will be sent across the network by the JobScheduler (either Master or Agent) that

initiates a task.

JobScheduler Master

Software- und Organisations-Service GmbH

April 2016

Communication and Operation 198

. The Master sends keep-alive packets to Classic Agents (up to and including Classic Agent release 1.9)
via TCP connections.

. The Master log will show a sCHEDULER-711_message at the info level stating that a keep-alive packet
has been successfully sent.

Connection Keep-Alive for Master and Agent

. See the Connection Keep-Alive for Master and Agent article for more detailed information.

Delimitation

. Keep-alive packets are not created if Remote File Watching is performed by the Agent.
. Keep-alive packets are only sent for running jobs.

Important

. The JobScheduler Universal Agent (available with JobScheduler 1.10 and later) does not use keep-alive
packets. Instead, the Universal Agent sends so-called heartbeats using a secure HTTP connection. See
the <remote scheduler>_(page 71) element for information about the configuration of heartbeats.

Job Parameters

Job parameters can be called using the Task. params() method.
Order Parameters

Order parameters can be called using the order. params() method.

Behavior with_<base>

Supplements the <param> element in the corresponding node of the basic XML configuration with the attribute
name= . Attributes specified here have precedence over those entered in the basic XML configuration.

Parent Elements

<params> - Parameters
Attributes

name =""Unique Names

value=

Environment variables (e.g. sHOME) are replaced by this attribute (see Settings which Allow Environment Variables
to be Called (page 106)).

XML Element <param. get>

e]
|<param. get
1

' name = "name
1> </param get>

—
>
(V]
o
Q
=
Q
3
0]
—
]
=
=)
Q
3
(0]

Returns <param>_with the JobScheduler parameter or <ok>_, when the parameter is not known.

Attributes

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Communication and Operation 199

name ="name" The parameter name

XML Element <params>

e]
'<params >

1

. param Individual Parameters
, copy params

, include

1 </params>

r
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Specifies the parameters for the JobScheduler, a job or an order. The parameters can be overwritten and extended
whilst the JobScheduler is running.

JobScheduler parameters can be called up using the spooler. variables() method.

Job parameters are called using the Task. params() method.

The parameters for an order can be called using the order. payload() method.

See also the variable set_and <sos. spooler. variable set> (page 79) classes.

Behavior with_<base>

Supplements the <params> element in the corresponding node of the basic XML configuration . Attributes specified
here have precedence over those entered in the basic XML configuration.

Parent Elements

<job> -

<add_order> - Add an order

<config> -

<modify_order> -

<payload> - Payload

<queued_task> -

<web_service> -

XML Element <params>

e]
'<params >

1

: param Individual Parameters
. copy_params

, include

1</params>

Specifies the parameters for the JobScheduler, a job or an order. The parameters can be overwritten and extended
whilst the JobScheduler is running.

JobScheduler parameters can be called up using the spooler. variables() _method.

Job parameters are called using the Task. params() method.

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Communication and Operation

200

The parameters for an order can be called using the order. payload() method.

See also the variable set_and <sos. spooler. variable set> (page 79) classes.

Behavior with_<base>

Supplements the <params> element in the corresponding node of the basic XML configuration . Attributes specified

here have precedence over those entered in the basic XML configuration.

Parent Elements

<job> -

<add_order> - Add an order
<config> -

<modify_order> -
<payload> - Payload
<queued_task> -

<web_service> -

XML Element <params. get>

P el e e e e e e e e e T i T T R

|<params. get

. name = "name" The parameter name

1> </params. get>

Returns <params>_including all JobScheduler variables.
Attributes

name ="name" The parameter name

XML Element <payload>

P e e e e e e e e e e T e T T R
1
1

<payload >
: params Parameters
1</ payload>

If the payload is not a variable set object, then it will be added as text.

Parent Elements

<order> -

XML Element <process class>

P i e e e e e e e i e T i T T R R e

1<process class

spooler id
name
max processes

"scheduler_id"
"name n
"number”

Software- und Organisations-Service GmbH

April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Communication and Operation 201

remote scheduler = "host:port” Task execution on remote
computers
replace = "yes|no"
>
remote schedulers
</process class>

Defines or modifies a process class.

See also <process class. remove>_(page 202).

Behavior with_<base>

Supplements the <process class> element in the corresponding node of the basic XML configuration . Attributes
specified here have precedence over those entered in the basic XML configuration.

Parent Elements

<process_classes> -

Attributes

spooler id="scheduler_id"

An element having this attribute is only active when the attribute is either:
. empty

. set to the -id= JobScheduler start parameter
. or when the JobScheduler -id_option is not specified when starting the JobScheduler.

name ="name"

The name of the process class. Should this attribute be missing or empty (") then the default process class will be
changed.

See the process class= attribute of the <job> (page 42) element.

See the process class= attribute of the <job chain> (page 47) element.

max_processes ="number” (Initial value:30)

Limits the number of processes.

Some operating systems limit the number of processes which the JobScheduler can start. The number of
processes configured here should not exceed the number allowed by the operating system. A value below 64 is
usually safe.

For Microsoft Windows systems, the maximum number of processes that are allowed to be executed in parallel is
currently 30.

remote scheduler="host:port" Task execution on remote computers

Specifies the remote computer on which the tasks of this process class are to be executed. This computer is
specified using its host name or IP number and TCP port (see <config tcp port=".."> (page 21)).

Software- und Organisations-Service GmbH April 2016

Communication and Operation 202

The remote computer must allow access with <allowed host level="all">_.

Tasks executed communicate with the controlling JobScheduler via the APIl. However, the following points should
be noted:

. <include>_within <script>_is executed by a task process. The file to be included is thereby read by the
computer which carries out the task.

. The subprocess. timeout_and Task. add pid() _methods do not work. The JobScheduler cannot terminate
remote subprocesses whose time limits have been exceeded.

. Log. log file() _is, as with almost all methods, carried out on the computer on which the JobScheduler is
running and thereby accesses the files of its local file system.

Some settings are taken from the remote instead of from the controlling JobScheduler:

. sos. ini _(section[javal , entry javac= ..)
. factory. ini (section[spooler] , entry tmp= ..)

. <config java options="..">

. <config java class path=".">

. <config include path="..">

Messages

[warn] SCHEDULER-849 Timeout is not possible for a subprocess running on a remote host (it cannot be
killed), pid=

[warn] SCHEDULER-850 After lost connection to remote scheduler, process is going to be killed

[info] SCHEDULER-848 Task pid= started for remote scheduler

replace="yes|no" (Initial value:yes)

replace="yes" replaces the existing process class.

replace="no" only changes the attributes which are set by the process class.

XML Element <process class. remove>

1<process class. remove
1

' process class = "path” Name of the lock

1> </process class. remove>

Removes a process class.

See also <process class>_(page 68).

Parent Elements

<commands> -

Attributes

process class="path” Name of the lock

The JobScheduler delays deletion of a process class as long as tasks are still running in it. No new tasks will be
started during this time.

See also Process class. remove() _.

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Communication and Operation 203

XML Element <remove job chain>

T TS TS TS T T ST TS TS EEEEE]
1<remove job chain .
' job _chain = "name” :
1> </remove job chain> ,

REmoves a Job Chain.

This command uses the Job chain. remove() _method.

Example:

<remove job chain job chain="my job chain" />

Parent Elements

<commands> -
Attributes

job_chain="name"

XML Element <remove order>

T TS ST TS S SRS]
y<remove order :
' job chain = "name” :
, order = "jid" ,
1 1
1 1

> </remove order>

Removes an order from the job chain. Note that a job which is in the process of carrying out an order will not be
affected by this command.

The command uses the 0rder. remove from job chain() _method.

Example:

<remove order job chain="my jobchain" order="42" />

Parent Elements

<commands> -

Attributes

job_chain="name

order ="id"

The (alphanumerical) order identifier.

Software- und Organisations-Service GmbH April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Communication and Operation 204

XML Element <schedule. remove>

T TS TS TS T T ST TS TR SR EEE]
1<schedule. remove :
' schedule = "path"” The schedule path :
1> </schedule. remove> :

Removes a schedule.
See also <schedule> (page 75).

Parent Elements

<commands> -
Attributes

schedule="path" The schedule path

All tasks for jobs that use the schedule will be stopped.

Orders that use the schedule complete their job chain and will not be restarted, as long as the schedule is not
available.

XML Element <scheduler log.log categories. reset>

:<scheduler_log. log categories. reset
delay = "integer” Delay in Seconds
> </scheduler log.log categories. reset>

Resets all log categories back to the values set as the JobScheduler started.

See also

Example:

<scheduler log.log categories. reset delay="360"/>

Parent Elements

<commands> -
Attributes

delay="integer" Delay in Seconds

Delays resetting of the categories by the time specified.

XML Element <scheduler log.log categories. set>

I<scheduler ~log. log categories. set

' category = "name" Category Name
, value ="o|1"

1> </scheduler log.log categories.set>

Software- und Organisations-Service GmbH April 2016

Communication and Operation 205

See also

Example:

<scheduler log.log categories.set category="scheduler" value="1"/>

Parent Elements

<commands> -
Attributes

category="name" Category Name

value="0/1"

1 activates the category, 0 deactivates it.

XML Element <scheduler log log categories. show>

See also

Example:

<scheduler log.log categories. show/>

Parent Elements

<commands> -

XML Element <show calendar>

'<show _calendar

' what = "what" :
' limit = "number" :
! from = "yyyy-mm-ddThh:mm:ss" :
' before = "yyyy-mm-ddThh:mm:ss" :

> </show_calendar>

This command returns the start times of jobs and orders. The results are not sorted.

The 1imit="" attribute is per defafult setto 1imit="100" and thereby limits the number of results. The limit should
be set to a large enough value, so that no gaps appear in the (calender) list.

Example:

<show_calendar/>
<show calendar 1imit="1000" what="orders" from="2007-04-03T00:00:00"
before="2007-05-01T00: 00: 00" />

Parent Elements

Software- und Organisations-Service GmbH April 2016

Communication and Operation 206

<commands> -
Attributes

what ="what"

what="orders" also returns the start times of orders.
1limit="number" (Initial value:100)
Limits the number of entries that are returned in order avoid too large a result. Because calender entries are not

sorted according to time but by object, this command does not return the next 100 entries but effectively 100
random entries.

The limit should be set high enough so that entries are not lost.

from="yyyy-mm-ddThh:mm:ss"

Returns calender entries after a given date & time.

before="yyyy-mm-ddThh:mm:ss"

Returns calender entries before a given date & time. The default setting is a week after f rom= or a week after from.

XML Element <show_history>

L]
1<show history

1
1 1
' job = "job_name" :
' id = "number” :
' next = "number” :
' prev = "number" :
' what = :
1 1
1 1

> </show_history>

Example:

<show_history id="4711" next="10"/>

Parent Elements

<commands> -
Attributes

job="job_name"

The job name.

id="number"

Software- und Organisations-Service GmbH April 2016

Communication and Operation 207

The identifier for the history. (This attribute may not be called id, as this is a reserved term in XML.)

next ="number"

The first number entries made after the task id should be returned.

prev="number"

The last number entries made before the task id should be returned.

what=""

XML Element <show job>

T TS TS TS T TS TS T ST S S EEEEE]
1 <show_job

job = nnamen
job_chain = "name”
what =

nn

max orders =
max task history =
> </show_job>

nn

Example:

<show_job job="my job"/>

Parent Elements

<commands> -
Attributes

job="name"

The job name.

job chain="name"

Neither orders which are in this job chain nor tasks which process such orders are returned.

what=""

max orders=

—nn

max_task history=

Software- und Organisations-Service GmbH April 2016

Communication and Operation

208

XML Element <show job chain>

P i i R T e e e e e e e e e e e e e e i I T R 1

1<show_job chain

job chain =
max orders =
max order history =
what =

1
1
1
1
1
1
1
1
1
1> </show_job chain>

nn

nn

nn

nn

Example:

<show_job chains/>

Shows the job chain.

Parent Elements

<commands> -
Attributes

job_chain=""The job chain name

-

max orders=
p—]}

max_order history=

what=""

XML Element <show job chains>

P i R T e e e e e e e e e e e e e T R T 1

1<show_job chains

what ="
max orders ="
max order history ="

1
1
1
1
1
1
1
1> </show job chains>

Example:

<show_job chains/>

Invisible job chains (<job chain visible="no">_) will not be shown.

Parent Elements

<commands> -

Attributes

Software- und Organisations-Service GmbH

April 2016

Communication and Operation

209

what=

—nn

max orders

-

max order history=

XML Element <show jobs>

P T T I I I

1<show_ jobs

what ="

max_orders ="

max_task history ="
> </show_jobs>

Example:

<show_jobs/>

Invisible jobs (<job visible="no">_) will not be shown.

Parent Elements

<commands> -
Attributes

what=

—nn

max orders=

-

max_ task history=

XML Element <show order>

P T I

1<show order

, job _chain = "name”

, order = "id"

. history id = "integer”
' what ="

1

1

> </show_order>

Shows either the current order or an order out of the history.

Software- und Organisations-Service GmbH

April 2016

Communication and Operation

210

Example:

<show order job chain="my job chain" order="E4711"/>

Parent Elements

<commands> -
Attributes

job_chain="name"

The name of the job chain.

order ="id"

The order identifier.

history id="integer”

Completed orders are saved in the JobScheduler database history. This can lead to there being more than one
entry being made in the history under a particular order id, for example, when an order repeated because of the <
run_ time> _setting. Each history entry has a history id which can be used to access the entry. The order attribute is

then no longer required.

The history ID is returned by <show job chain what="order history">_.

what=""

XML Element <show state>

i e e T i T I I I e e
1

,<show state

, what = "what"

! max orders = "integer”
1> </show state>

The name of the show_state element may be shortened to s.

Example:

<show state/>
<show _state what="Jjob chain orders, job orders"/>

Parent Elements

<commands> -

Attributes

Software- und Organisations-Service GmbH

April 2016

Communication and Operation

21

what ="what"

(Note that this description applies to all commands; note however that some keywords will not make sense for all

commands.)

The JobScheduler filters command replies so that they do not become unnecessarily large. The following key

words may be used (if combined, then separated with a comma) to extend command replies.

max_orders ="integer"

Limits the number of orders that can be returned.

XML Element <show_ task>

P e e i T T e e e T T T 1
1

,<show task
. id

, what

1> </show task>

I
S
S
3
o
]
@

Shows information for a current task or for a task out of the history.

Example:

<show_ task id="4711"/>

Parent Elements

<commands> -
Attributes

id="number"

The task id.

what=""

XML Element <start job>

P e I T T e e e e e e e e e e e e e e e e i I T T 1

1<start job

1
f 1
' job = "job_name" :
' name = "name" :
' after = "number” :
! at = "yyyy-mm-dd hh:mm:ss | now | :
' period" :
! force = "yes|no" :
' web service = "name" :
[N - 1
1 1
, environment ,
' params Parameters :
1</start_job> :

Software- und Organisations-Service GmbH

April 2016

Communication and Operation 212

Example:

<start job job="my job" at="now">

<params>
<param name="number" value="100"/>

</params>
</start_job>

Parent Elements

<commands> -
Attributes

job="job_name"

The job name.

name ="name"

A task can be given a name here.

after="number"

A delay - the number of seconds after which a task should be started.

at="yyyy-mm-dd hh:mm:ss | now | period” (Initial value:now)

The time at which a task is to be started. <run time>_is deactivated.
Relative times - "now", "now + HH: MM[: SS]" and "now + SECONDS" - are allowed.
at="period" allows a job to start when allowed by <run time> (thatis in the current or next period).

force="yes|no" (Initial value:yes)

force="no":

. A job that with the "stopped" state will remain in this state.

. If a start time has been specified with either <run time> or <schedule>_and this does not allow a job to start
then the JobScheduler will postpone the start to the next period.

. This means that at="now" has the same effect as at="period".

force="yes":

. This means that at="now" has the same effect as at="period". A job that with the "stopped" state will be
immediately started.

. A job with a start time specified using at= will be started at this time, regardless of whether or not a run-time
period has been specified using <run time>_Or <schedule>_.

Software- und Organisations-Service GmbH April 2016

Communication and Operation

213

web service="name"

After a task has been executed, it is transformed with a style sheet and handed over to a Web Service.

See <web_service> (page 83).

XML Element <terminate>

> </terminate>

i<terminate

! all schedulers = "yes|no"

' restart = "yes|no"

: continue exclusive operat = "yes|no"

, ion

' timeout = "seconds”
1

1

Correct termination of the JobScheduler (see Terminating the JobScheduler (page 233)).

Example:

<terminate>

Parent Elements

<commands> -
Attributes

all schedulers="yes|no" (Initial value:no)

Causes all participating JobSchedulers to be stopped when used in conjunction with —exclusive

restart="yes|no" (Initial value:no)

Causess the JobScheduler to restart.

continue exclusive operation="yes|no" (Initial value:no)

Causes an inactive JobScheduler to take over operation when set in conjunction with —exclusive_.

timeout="seconds"

When specified, causes the JobScheduler to break off all tasks still running after the time specified.

XML Element <xml payload>

I I e e e i e T T e e
1
1

<xml payload > </xml payload>

The <xml payload> contains a single XML element (with unlimited child elements). The order. xml payload

property contains this element as XML text.

Software- und Organisations-Service GmbH

April 2016

http://www.sos-berlin.com/doc/en/scheduler_api/sos_help.htm

Communication and Operation 214

Parent Elements
<order> -
<add_order> - Add an order

<modify_order> -

5.2.1 XML Answers

XML Elements

XML Element <answer>

e]
\<answer :
' time = "yyyy-mm-dd hh:mm:ss.mmm" :
\> :
' ERROR Error Messages :
' history Task-History :
' job Job :
' job chain Job Chain :
' order Order :
' process classes Process Classes :
' ok Simple Answer :
! log categories Log Categories :
! state General Status of the JobScheduler :
' task Tasks :
1 </answer> :

The JobScheduler only returns one of the child elements.

Parent Elements

<spooler> -
Attributes

time="yyyy-mm-dd hh:mm:ss.mmm"

The answer time stamp.

XML Element <ERROR>

e]
! <ERROR ,
' time = "yyyy-mm-dd hh:mm:ss" Timestamp '
' class = "name” Name of the (C++) exception class '
' code = "text" Error code '
' text = "text" Error code and error text '
. source = "filename" Name of the file containing the error :
! line = "number" Line Number '
' col = "number" Column Number '
1 1
1 1

> </ERROR>

Software- und Organisations-Service GmbH April 2016

Communication and Operation

215

Parent Elements
<answer> - Answer
<job> - Job

<task> - Tasks

Attributes

time="yyyy-mm-dd hh:mm:ss" Timestamp

class="name" Name of the (C++) exception class

code="text" Error code

text ="text" Error code and error text

source="flename" Name of the file containing the error

the error file name, should it be possible to associate the error with a file.

line="number" Line Number

the line number (starting from 1) in which the error occurs, should it be possible to associate the error with a

particular line.

col="number" Column Number

the number of the column in which the error occurs (starting from 1), should it be possible to associate the error

with a particular column.

XML Element<file based>

e e e e e e e I T e e e e e e i e e e T T T 1
1

<file based
filename

last write time
state

ERROR
removed
</file based>

1
1
1
1
1
1
1
1
g
1
1
1
1
1
1

r

Parent Elements
<process_class> -
<lock> -

<job> - Job

<job_chain> - Job Chain

<order> - Order

= File name
The file timestamp in UTC

Error Messages
The incomplete removal of an object

Software- und Organisations-Service GmbH

April 2016

Communication and Operation 216
Attributes
filename=""File name
last write time=""The file timestamp in UTC
state=""
one of the following values: undefined, not_initialized, initialized, loaded, active and closed.
XML Element <history>
e]
1<history > :
! history. entry Entry in the Task History :
1</history> :
The History is read from the database.
Parent Elements
<history> - Task-History
XML Element <history. entry>
o m s s s s e e e e e m eSS m === 1
!<history. entry :
! task = "number" Task id '
' id = "number" Task id (out of date) '
' spooler id = "name" Scheduler id :
' job name = "name" Job name :
: start time = "yyyy-mm-dd hh:mm:ss" The task start time :
. end time = "yyyy-mm-dd hh:mm:ss" The task end time :
' cause = "cause” The Reason for the start '
! steps = "number" Number of job steps '
' error ="0|1" "1" for a job error :
' error code = "text" Error code :
, error_ text = "text” Error code with error text :
> :
' ERROR Error Messages :
1</history. entry> :
The History is read from the database.

Example:
Parent Elements
<history> - Task-History
Attributes
task="number" Task id
Software- und Organisations-Service GmbH April 2016

Communication and Operation 217
id="number" Task id (out of date)

Use the attribute task=.

spooler id="name" Schedulerid

The JobScheduler id (or "-", should the scheduler not have an id).

job_name="name" Job name

start_time="yyyy-mm-dd hh:mm:ss" The task start time

end_time="yyyy-mm-dd hh:mm:ss" The task end time

cause="cause" The Reason for the start

See <task cause=".."> (page 230)

steps ="number” Number of job steps

error="0|1""1" for a job error

error code="text" Error code

The <errOR>_element will be returned instead of this attribute within <job> .

error text="text" Error code with error text

The <ERROR>_element will be returned instead of this attribute within <job>_.

XML Element <job>

1<job :
, job = "name" Job name ,
! state = "name" State :
' waiting for process = "yes|no" When a job is waiting for a |
, process ,
! all steps = "number” The number of job steps for all |
: tasks '
' all tasks = "number” The number of tasks already
: started '
! state text = "text" The properties of job.state_text :
! log file = "dateiname" The name of the protocol file .
, order = "yes|no" For order controlled jobs ,
! tasks = "number" Maximum number of tasks .
, allowed ,
, next start time = "yyyy-mm-dd hh:mm:ss.mmm" Next planned start time '
Software- und Organisations-Service GmbH April 2016

Communication and Operation 218
: delay after error = "yyyy-mm-dd hh:mm:ss.mmm" delay_after_error takes effect .
1
' after an error !
. 1
: in period = "yes|no” When a <period> is valid '
. . . 1
. has description = "yes" yes, when a job has a < .
. . 1
: description> '
. . 1
: remove = "yes" yes, when a job is removed 1
. . 1
: temporary = "yes" yes, when a job is temporary 1
. 1
. enabled = "yes|no" Disable a Job. .
> :
: tasks List of Tasks Currently Running :
: description :
: commands :
: params :
: lock. requestor :
: queued tasks Number of Queued Tasks |
. . 1
. history Task-History '
1
: order queue Order Queue '
1
. ERROR Error Messages |
1</ 3 0b> :
__ 1
Example
Parent Elements
<jobs> -
<answer> - Answer
Attributes
job="name" Job name
state="name" State
state="none" The initial status of a job as the JobScheduler starts.
state="stopping" The job has been stopped and not all tasks have ended.
state="stopped" The job has been stopped and all tasks have ended.
state="read_error" The status when <script>_cannot be read.
state="pending" No task is running.
state="running" At least one task is running.
waiting for process="yes|no" (Initial value:no) When a job is waiting for a process
This occurs when a job attempts to start a task but the process class is not large enough.
See <job process class=".."> (page 42).
all steps="number" The number of job st