
March 2015 JobScheduler Web Services page: 1

JobScheduler - Job Execution and Scheduling System
Software Open Source

JobScheduler Web Services
Executing JobScheduler commands

Technical Reference
March 2015

JobScheduler Web Services - Contact Information
Software Open Source

March 2015 JobScheduler Web Services page: 2

Contact Information

Software- und Organisations-Service GmbH

Last Updated: 03/13/2015 12:01 PM

This documentation is based on JobScheduler Version 1.7.4169.

Copyright © 2005-2015 SOS GmbH Berlin.

All rights reserved. All trademarks or registered trademarks are the property of their respective holders. All
information and materials in this book are provided "as is" and without warranty of any kind. All information in this
document is subject to change without further notice.

This product includes software developed by the Apache Software Foundation (http://apache.org/)

We would appreciate any feedback you have, or suggestions for changes and improvements; please forward your
comments to info@sos-berlin.com.

Giesebrechtstr. 15
D-10629 Berlin
Germany

Telephone +49 (0)30 86 47 90-0
Telefax +49 (0)30 8 61 33 35
Mail info@sos-berlin.com
Web http://www.sos-berlin.com

http://www.sos-berlin.com

1 Abstract . 4

2 Getting started . 5

3 Introduction . 6

4 Use of the JobScheduler for Web Services .7
4.1 The Web Service Capability of Programs and Scripts . 7
4.2 Jobs Orchestration using Web Services . 8
4.3 Routing Web Service Requests .9

5 The Asynchronous Web Service Query Process . 11

6 The synchronous Web Service . 13

7 Web Service Control .15
7.1 Starting a Job .15
7.2 Starting a job chain . 16

8 Configuration of an asynchronous Web Service . 17

9 Configuration of a Job Chain as an asynchronous Web Service . 18
9.1 The Style Sheet "request_xslt_stylesheet" . 18
9.2 The Style Sheet "response_xslt_stylesheet" . 20
9.3 The Style Sheet "forward_xslt_stylesheet" . 21

10 Configuration of a synchronous Web Service . 23

11 The Creation of Jobs for Synchronous Web Services . 24
Appendix A: The execute_file_request.xslt Style Sheet .26
Appendix B: execute_file_response.xslt . 27
Appendix C: execute_file_forward.xslt . 28
12 Index .29

JobScheduler Web Services - Table of Contents
Software Open Source

March 2015 JobScheduler Web Services page: 3

Table of Contents

JobScheduler Web Services - Abstract
Software Open Source

March 2015 JobScheduler Web Services page: 4

1 Abstract

... to be defined ...

JobScheduler Web Services - Getting started
Software Open Source

March 2015 JobScheduler Web Services page: 5

2 Getting started

... to be defined ...

JobScheduler Web Services - Introduction
Software Open Source

March 2015 JobScheduler Web Services page: 6

3 Introduction

The JobScheduler offers an interface with which the JobScheduler "external API" are provided as Web Services.
With the external API objects, for example jobs, job chains and orders, can be scheduled. The following two types
of Web Service can be provided:

Asynchronous Web Services

The JobScheduler can be configured to accept and reply to Web Service requests using XSLT-Stylesheets . It is
not restricted to using a specialized protocol above HTTP (such as SOAP). The implementation of this protocol is
not contained in the JobScheduler itself but in the style sheets.

Existing job chains can be adapted with this method for use as Web Services. The use of this technique means that
the results from order processing are relayed asynchronously. A synchronous response is however also possible
with this method - as confirmation that an order has been accepted.

Synchronous Web Services

Should synchronous responses containing the results of job processing be required, then the necessary interfaces
must be included in the jobs themselves. Synchronous job responses are then sent by way of the JobScheduler
API.

The Web Service queries are then interpreted in jobs. Style sheets are not used - instead, a job chain is configured
to reply to the Web Service.

An understanding of the following subjects is seen as a requirement for this tutorial:

Knowledge of the syntax of SOAP messages

An understanding of the use of Jobs and Job Chains in the JobScheduler

Basic knowledge of the JobScheduler XML Commands

Basic knowledge of XSLT (for asynchronous Web Services)

Knowledge of the JobScheduler internal API (for example Java) for the job implementation (for synchronous
Web Services)

http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://www.w3.org/TR/soap/

JobScheduler Web Services - Use of the JobScheduler for Web Services
Software Open Source

March 2015 JobScheduler Web Services page: 7

4 Use of the JobScheduler for Web Services

The JobScheduler can make objects available to start initiated by a Web Service. The following examples show the
usage of this interface in different fields of application

4.1 The Web Service Capability of Programs and Scripts

Executable programs und shell scripts can be made available as Web Services. Applications can then control
JobScheduler objects by way of Web Service calls. In turn, these objects can be used to start programs, (shell-)
scripts or Java classes.

JobScheduler Web Services - Use of the JobScheduler for Web Services
Software Open Source

March 2015 JobScheduler Web Services page: 8

4.2 Jobs Orchestration using Web Services

Programs and scripts can be integrated in Business Process Management (BPM) using the JobScheduler Web
Service. The JobScheduler then delivers synchronous and asynchronous responses to the BPM engine.

JobScheduler Web Services - Use of the JobScheduler for Web Services
Software Open Source

March 2015 JobScheduler Web Services page: 9

4.3 Routing Web Service Requests

The JobScheduler can route Web Service requests from the internet to an intranet. The requests are then received,
authenticated and validated, and valid requests forwarded to a further JobScheduler in the intranet.

JobScheduler Web Services - Use of the JobScheduler for Web Services
Software Open Source

March 2015 JobScheduler Web Services page: 10

JobScheduler Web Services - The Asynchronous Web Service Query Process
Software Open Source

March 2015 JobScheduler Web Services page: 11

5 The Asynchronous Web Service Query Process

The JobScheduler must be configured to provide a Web Service by way of an URL. This URL is then when a client
sends a Web Services query to the JobScheduler (host and TCP port) per HTTP POST. In the example presented
in this documentation the http://localhost:4444/execute_file URL is used.

The JobScheduler is not able to understand such incoming queries directly and therefore uses a
request_xslt_stylesheet which has been preconfigured for the Web Service. This style sheet is used to transform
the query into an XML command which can then be interpreted by the JobScheduler .

The JobScheduler executes the XML command and holds the HTTP connection open. Further, it returns answers
in XML format after executing XML commands. For example, the JobScheduler returns the following XML answer
on successful completion of the <kill_task> command:

The (SOAP) client at the other end of the open HTTP connection expects a synchronous reply in the form of a
SOAP message. The JobScheduler therefore uses the response_xslt_stylesheet to transform its XML responses
into a format which the client can understand. After sending this reply to the client, the JobScheduler closes the
HTTP connection.

Such synchronous responses generally contain relatively simple information such as whether, for example, an
order has been successfully received and which ID it has been allocated. In order to provide a Web Service in
which the response contains the results of a completed order, it must also be possible to make responses
asynchronously. This is necessary as order queuing and execution can take longer than the time for which the
HTTP connection is kept alive. In this case, the order parameters (which change as a job chain is processed) are
transformed using the style sheet "forward_xslt_stylesheet" . The result of the order is sent as an asynchronous
response to the (SOAP) client (or a completely different recipient) using a new HTTP connection.

<spooler>
<answer>
<ok/>
</answer>
</spooler>

JobScheduler Web Services - The Asynchronous Web Service Query Process
Software Open Source

March 2015 JobScheduler Web Services page: 12

JobScheduler Web Services - The synchronous Web Service
Software Open Source

March 2015 JobScheduler Web Services page: 13

6 The synchronous Web Service

C o n s i d e r t h e s i t u a t i o n w h e r e a W e b S e r v i c e h a s b e e n c o n f i g u r e d f o r t h e
http://localhost:4444/test_webservice URL and that this service uses a job chain to synchronously reply to
Web Service queries. These queries come to the JobScheduler (to the host and TCP port) from the client as
HTTP-POST requests.

The JobScheduler would not attempt to interpret this query, but create an order for the job chain which has been
pre-configured for Web Services. This order would then contain the query.

The jobs in this Web Services job chain have the possibility of reading the query out of the order and replying to it.
Jobs in this job chain must reply to the query using the Web_service_response.send() method.

JobScheduler Web Services - The synchronous Web Service
Software Open Source

March 2015 JobScheduler Web Services page: 14

JobScheduler Web Services - Web Service Control
Software Open Source

March 2015 JobScheduler Web Services page: 15

7 Web Service Control

The JobScheduler distribution contains two style sheets, which enable the Web Service functions of the
JobScheduler with SOAP. This Web Service is, however, per default inactive.

<web_service
debug = "no"
request_xslt_stylesheet = "config/scheduler_soap_request.xslt"
response_xslt_stylesheet = "config/scheduler_soap_response.xslt"
name = "scheduler"
url_path = "/scheduler" >
</web_service>

Example: scheduler.xml: Web Service activation

7.1 Starting a Job

The SOAP <startJob> method, which is made available in the http://www.sos-berlin.com/scheduler
namespace is used to start a job. This method recognizes the following parameters, which are then sent as child
elements :

Job parameters can be set by sending as many <param> elements as required. Note that <param> has <name> and
<value> as child elements.

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Body>
<startJob xmlns="http://www.sos-berlin.com/scheduler">
<job>scheduler_check_sanity</job>
<at>2011-03-16 17:05:00</at>

</startJob>
</soapenv:Body>

</soapenv:Envelope>
Example: startJob for the scheduler_check_sanity Job

A SOAP document is returned as reply, containing the task id allocated by the JobScheduler.

To use the web service of the JobScheduler the tag must be inserted in the scheduler.xml. The best way to
customize this is to use JOE.

A Web Service will then be available under the

http://scheduler_host:scheduler_port/scheduler

URL after the JobScheduler has been restarted.

• job: the Jobname

• name: the Task Name (optional)

• after: the number of seconds which should be waited before the task is started (optional)

• at: a time at which the task should be started (optional)

JobScheduler Web Services - Web Service Control
Software Open Source

March 2015 JobScheduler Web Services page: 16

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Body>
<sos:taskId xmlns:sos="http://www.sos-berlin.com/scheduler">112491</sos:taskId>
</soapenv:Body>
</soapenv:Envelope>

Example: SOAP Answer to startJob

7.2 Starting a job chain

The SOAP addOrder method is used to create an order. This method recognizes the following parameters, which
must be sent as child elements of <addOrder>:

Order parameters can be set by sending as many <param> elements as required.

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Body>
<addOrder xmlns="http://www.sos-berlin.com/scheduler">

<jobchain>database_reports</jobchain>
<title>soaptest</title>
<param>

<name>command</name>
<value>SELECT * FROM SCHEDULER_MANAGED_ORDERS</value>

</param>
<param>

<name>database_connection</name>
<value>scheduler</value>

</param>
<param>

<name>scheduler_order_report_mailto</name>
<value>email@myhost.com</value>

</param>
<param>

<name>scheduler_order_report_asbody</name>
<value>1</value>

</param>
<param>

<name>scheduler_order_report_subject</name>
<value>webservice_test 1</value>

</param>
</addOrder>

</soapenv:Body>
</soapenv:Envelope>
Example: addOrder for the database_reports Job Chain (from the Managed Jobs Packet)

A SOAP document containing the id assigned by the JobScheduler to the order is then sent as a reply.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Body>
<sos:orderId xmlns:sos="http://www.sos-berlin.com/scheduler">16120</sos:orderId>

</soapenv:Body>
</soapenv:Envelope>

Example: SOAP Reply to addOrder

• jobchain: The order job chain

• id: the order id (optional)

• title: the order title (optional)

JobScheduler Web Services - Configuration of an asynchronous Web Service
Software Open Source

March 2015 JobScheduler Web Services page: 17

8 Configuration of an asynchronous Web Service

In order that the JobScheduler can use the style sheets which are described in the next chapter of this
documentation, the scheduler.xml configuration file must be modified. First of all a <http_server> element must
be added after the </process_classes> element, should it not already exist.

A <web_service> element then needs to be added within the <http_server> for each Web Service. The
configuration of the Web Service for the example used in this documentation is as follows:

<web_service
debug = "yes"
request_xslt_stylesheet = "config/webservice/execute_file_request.xslt"
response_xslt_stylesheet = "config/webservice/execute_file_response.xslt"
forward_xslt_stylesheet = "config/webservice/execute_file_forward.xslt"
name = "execute_file"
url_path = "/execute_file" />

Example: Web Service config

The debug="yes" parameter causes the results of the XSL transformation to be saved in the JobScheduler log
directory. This is useful for monitoring whether a transformation has been carried out as expected, but should be
switched off in a productive system as this can create large amounts of data.

Note that in a real JobScheduler installation, the paths to the directories in which the style sheets are to be found
may differ from those given in the example above. Note also that the JobScheduler must be restarted before
changes made to the scheduler.xml file are implemented.

JobScheduler Web Services - Configuration of a Job Chain as an asynchronous Web Service
Software Open Source

March 2015 JobScheduler Web Services page: 18

9 Configuration of a Job Chain as an asynchronous Web Service

In the following example it is assumed that the JobScheduler has been installed together with the Managed Jobs
packet. A preconfigured job chain is included in the Managed Jobs packet. This job chain includes the
JobSchedulerManagedExecutableJob, which in turn starts executable files on the JobScheduler host.

Note that the Managed Jobs packet is not a requirement for Web Services with the JobScheduler, it is only used for
this example.

A SOAP interface should be made available for this job chain which allows executable files to be processed on the
JobScheduler host. A UNIX "ls" command, which writes the content of a working directory to stdout, is used as an
example call. An asynchronous answer containing the stdout standard output from the executable file should be
available as an option.

The complete style sheet source code can be found in the appendices.

9.1 The Style Sheet "request_xslt_stylesheet"

The SOAP query itself forms the starting point for the development of style sheets to accept SOAP queries and
transform them into XML commands which the JobScheduler can understand. The SOAP interface uses an
executeFile method, with a file parameter to specify the request.

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header>
<wsa:To xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">
http://localhost:4444/execute_file

</wsa:To>
</soapenv:Header>
<soapenv:Body>
<executeFile xmlns="http://www.sos-berlin.com/scheduler">
<file>ls</file>

</executeFile>
</soapenv:Body>

</soapenv:Envelope>
Example: SOAP Request Method executeFile

Before the JobScheduler transforms the request, it embeds it in a <service_request> document, which transports
additional meta-information about the query.

<?xml version="1.0" encoding="UTF-8"?>
<service_request url="http://localhost:4444/execute_file">
<web_service name="execute_file"

url_path="/execute_file"
request_xslt_stylesheet="config/webservice/execute_file_request.xslt"
response_xslt_stylesheet="config/webservice/execute_file_response.xslt"
debug="1"/>

<content>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

...
</soapenv:Envelope>

</content>
</service_request>

Example: service_request

Note that the style sheet must stem from a <service_request> root:

<xsl:template match="/service_request">

JobScheduler Web Services - Configuration of a Job Chain as an asynchronous Web Service
Software Open Source

March 2015 JobScheduler Web Services page: 19

The second template does not only select the expected executeFile method, but all elements in the "soapBody"
mode. On the one hand, this is done so that differing methods can be handled by a style sheet (and Web Service).
In this case a new template with the "soapBody" mode would be written for each method. On the other hand, this
allows valid SOAP requests which contain an unknown method to return a SOAP error. This topic will be covered in
more detail later. In this example, a template is required for the <execute_file> elements.

<xsl:template match="sos:executeFile" mode="soapBody" priority="2">
<add_order job_chain="executable_files">
<xsl:attribute name="web_service">
<xsl:value-of select="/service_request/web_service/@name"/>

</xsl:attribute>
<params>

<param name="command">
<xsl:attribute name="value">
<xsl:value-of select="sos:file"/>

</xsl:attribute>
</param>

</params>
</add_order>

</xsl:template>
Example: Template for executeFile

The template generates an <add_order> command for the job chain executable files. Further, the web_service
attribute containing the names of the Web Services being called (see Configuration) is added to the <add_order>
command.

<?xml version="1.0" encoding="UTF-8"?>
<add_order job_chain="executable_files" web_service="execute_file">
<params>
<param name="command" value="ls"/>
</params>

</add_order>
Example: Order: executable_files

The transfer of the name of the Web Service to the order is a prerequisite for the JobScheduler later returning an
asynchronous answer or making a redirection.

The order parameters are set in <params>. The JobSchedulerManagedExecutableJob recognizes the command
parameter which in turn contains the command to be executed (in this case "ls").

A further template is used for the treatment of errors. This template is used for all method calls which have not
been matched to other templates. In the example used in this documentation this template would be used for all
methods other than executeFile.

<xsl:apply-templates select="content/soapenv:Envelope/soapenv:Body"/>
</xsl:template>

<xsl:template match="soapenv:Body">
<xsl:apply-templates select="*" mode="soapBody"/>

</xsl:template>

JobScheduler Web Services - Configuration of a Job Chain as an asynchronous Web Service
Software Open Source

March 2015 JobScheduler Web Services page: 20

<xsl:template match="*" mode="soapBody" priority="0.5">
<!-- Generate SOAP error message for the Web Service -->
<service_response>
<content>
<soapenv:Envelope>
<soapenv:Body>
<soapenv:Fault>
<faultcode>SOAP-ENV:Client</faultcode>
<faultstring>unknown command: <xsl:value-of select="name(.)"/>
</faultstring>
</soapenv:Fault>

</soapenv:Body>
</soapenv:Envelope>

</content>
</service_response>

</xsl:template>
Example: treatment of errors

9.2 The Style Sheet "response_xslt_stylesheet"

After the JobScheduler has taken on an order, it either returns an answer containing the <OK> element as well as
other information about the new order or, in the event of an error, the <ERROR> element.

<?xml version="1.0" encoding="iso-8859-1"?>
<spooler>
<answer time="2011-02-14 12:19:46.342">
<ok>
<order order="3823" id="3823" state="0" initial_state="0"

job_chain="executable_files" job="scheduler_managed_executable_file"
priority="0" created="2011-02-14 12:19:46.342" web_service="execute_file">

<log level="debug9"/>
</order>

</ok>
</answer>

</spooler>
Example: The JobScheduler Response

The response from the JobScheduler is transformed using the response_xslt_stylesheet and synchronously sent
back to the client. This requires that a <service_response> command is generated for the JobScheduler:

<xsl:template match="/spooler/answer">
<service_response>
<content>
<soapenv:Envelope>
<soapenv:Body>
<xsl:apply-templates select="ERROR | ok"/>

</soapenv:Body>
</soapenv:Envelope>

</content>
</service_response>

</xsl:template>
Example: template: spooler/answer

This template generates the JobScheduler <service_response> command. This command then returns the
content of the <content> element as an (asynchronous) response and thereby generates a SOAP error message
for all unknown method calls.

a response such as the ID given to the new order can then be synchronously returned to the client, should the
order be accepted:

<xsl:template match="ok[order]" priority="2">
<sos:orderId><xsl:value-of select="order/@order"/></sos:orderId>

</xsl:template>

JobScheduler Web Services - Configuration of a Job Chain as an asynchronous Web Service
Software Open Source

March 2015 JobScheduler Web Services page: 21

Other (synchronous) responses are also possible - for example, a Boolean value indicating the success of a
command.

9.3 The Style Sheet "forward_xslt_stylesheet"

After an order has been completed by the JobScheduler, a result can be delivered to the Web Service or to another
address asynchronously. This involves a further XSLT transformation of either an <order> or a <task> element,
depending on whether or not an add_order or a start_job command has executed by the Web Service.

Information about an order and the order parameters are contained in the <order> element. The std_out_output
paramete r con ta in ing the STDOUT outpu t f rom a command is genera ted by the
"JobSchedulerManagedExecutableJob" job after an order has been executed.

This output is then transformed using the style sheet before being forwarded as a SOAP response.

<xsl:template match="order">
<service_request url="http://localhost:5555/webservice">
<content>
<soapenv:Envelope>
<soapenv:Body>
<xsl:apply-templates select="payload/params/param[@name='std_out_output']"/>

</soapenv:Body>
</soapenv:Envelope>

</content>
</service_request>

</xsl:template>
Example: Template:order

It is necessary that a <service_request> element is generated here as well. To do this a url parameter needs to
be created for the return address, as it is necessary to establish a new connection for the asynchronous reply. In
this example, the URL is hard coded in the style sheet. Note that hard coded URLs only make sense when it is
planned that responses are always to be returned to this one address.

In practice, it is more usual that the response address is contained in the query from the Web Service client. In this
case, the request_xslt_stylesheet must write the return address in an order parameter, which can then be reread by
forward_xslt_stylesheet.

The template then selects the parameter named "std_out_output" and writes the content in a new element in the
response:

<xsl:template match="param[@name='std_out_output']">
<sos:stdOut>
<xsl:value-of select="@value"/>

</sos:stdOut>
</xsl:template>

Example: Template get Stdout

In this way the standard output (stdout) can be forwarded to the application receiving the Web Service responses.
Note that it is important that the application which processes such output correctly interprets the new lines in the <
sos:stdOut> element as genuine new lines.

JobScheduler Web Services - Configuration of a Job Chain as an asynchronous Web Service
Software Open Source

March 2015 JobScheduler Web Services page: 22

<?xml version="1.0"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Body>
<sos:stdOut xmlns:sos="http://www.sos-berlin.com/scheduler">bin
config
jobs
lib
logs
mail
web
</sos:stdOut>
</soapenv:Body>

</soapenv:Envelope>
Example: JavaScript®: HelloWorld

JobScheduler Web Services - Configuration of a synchronous Web Service
Software Open Source

March 2015 JobScheduler Web Services page: 23

10 Configuration of a synchronous Web Service

Before the JobScheduler can use the job described in the following chapter for a Web Service, it is necessary to
configure a job chain in the live folder.

The job chain for the example in the next chapter is configured as follows:

<job_chain name="web_service_test">
<job_chain_node state="1" job="web_service_test_job" next_state="100" error_state="999" />
<job_chain_node state="100"/>
<job_chain_node state="999"/>

</job_chain>
Example: job chain: web_service_test

<job name = "web_service_test_job"
order = "yes">
<script language = "java"

java_class = "sos.scheduler.service.WebServiceTestJob"/>
</job>

Example: Job: web_service_test_job

<web_service name="test"
job_chain="web_service_test"
url_path="/test"/>
Example: JavaScript®: HelloWorld

Note that the JobScheduler must be restarted after the scheduler.xml file has been changed.

Although job chains usually consist of a number of jobs, the example chain has only the one
web_service_test_job job. This job is configured as follows in the live folder:

In order that this job chain can be used as a synchronous Web Service, a Web Service definition needs to be
created in the <web_services> element (this element is described in "Configuration of Asynchronous Web
Services"):

JobScheduler Web Services - The Creation of Jobs for Synchronous Web Services
Software Open Source

March 2015 JobScheduler Web Services page: 24

11 The Creation of Jobs for Synchronous Web Services

This chapter shows how a job which can read a Web Service request and return a synchronous response could be
implemented.

The function of this job is the interpretation of possible protocols such as SOAP. The job receives the request
content in either binary or string form. Note that in order to keep this example simple, XML will not be interpreted
here, as this would make the code longer and more complicated. The use of the DOM is also not covered by this
documentation. Therefore the following job only logs the request content and returns a string containing the task ID.

package sos.scheduler.service;

import sos.spooler.Job_impl;
import sos.spooler.Order;
import sos.spooler.Web_service_operation;
import sos.spooler.Web_service_request;
import sos.spooler.Web_service_response;

public class WebServiceTestJob extends Job_impl {

public boolean spooler_process() throws Exception {
Order order = spooler_task.order();
Web_service_operation operation;
try {
operation = order.web_service_operation();

} catch (Exception e){
spooler_log.info("There is no Web Service operation attached to this order");
return true;

}
// read request
Web_service_request request = operation.request();
spooler_log.info("Content of Web Service Request:\n"+request.string_content());

// send reply
Web_service_response response = operation.response();

response.set_string_content("Task ID: "+spooler_task.id());
response.send();
return true;

}
}

Example: Implementation: WebServiceTestJob.java

The request content is read out of the Web_service_request object and written in the log.

The answer is added to the Web_service_response object and synchronously sent back to the client using send().

In practice the Web_service_request would be read by one job and the Web_service_response set by another. It
would be possible to create a job chain in which the first job reads the Web_service_request object and evaluate
and write request parameters into the order payload. Subsequent jobs would then process the order payload and
only the last job would write in the Web_service_response object and call the send() method.

The example job described above is also available for download in the JobScheduler distribution samples package
in versions for JavaScript® and Perl. These versions can be found under the following names:

The web_service_operation() call is placed in a try-catch block at the start of the job. This is necessary as it is
possible that the job has to process an order which was created by the JobScheduler but had not been processed
before the Scheduler shut down. In this case the JobScheduler would load the order from its database although the
HTTP connection to the client no longer existed. Further, the Web_service_operation object would no longer
exist. The job should catch this error and decide how to handle the order.

• web_service_test_job.js

• web_service_test_job.pl

http://www.sos-berlin.com/download/scheduler/samples/jobs/web_service_test_job.pl
http://www.sos-berlin.com/download/scheduler/samples/jobs/web_service_test_job.js

JobScheduler Web Services - The Creation of Jobs for Synchronous Web Services
Software Open Source

March 2015 JobScheduler Web Services page: 25

In addition to the creation of a job, the example configurations included in the samples package create job chains
and Web Services.

JobScheduler Web Services - The execute_file_request.xslt Style Sheet
Software Open Source

March 2015 JobScheduler Web Services page: 26

Appendix A: The execute_file_request.xslt Style Sheet

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:sos="http://www.sos-berlin.com/scheduler"

exclude-result-prefixes="soapenv sos" version="1.0">
<xsl:output method="xml" indent="yes"/>

<xsl:template match="/service_request">
<xsl:apply-templates select="content/soapenv:Envelope/soapenv:Body"/>

</xsl:template>

<xsl:template match="soapenv:Body">
<xsl:apply-templates select="*" mode="soapBody"/>

</xsl:template>

<xsl:template match="*" mode="soapBody" priority="0.5">
<!-- Generate SOAP Error Message for the Webservice -->
<service_response>
<content>
<soapenv:Envelope>
<soapenv:Body>

<soapenv:Fault>
<faultcode>SOAP-ENV:Client</faultcode>
<faultstring>unknown command: <xsl:value-of select="name(.)"/>
</faultstring>

</soapenv:Fault>
</soapenv:Body>

</soapenv:Envelope>
</content>

</service_response>
</xsl:template>

<xsl:template match="sos:executeFile" mode="soapBody" priority="2">
<add_order job_chain="executable_files">
<xsl:attribute name="web_service">
<xsl:value-of select="/service_request/web_service/@name"/>

</xsl:attribute>
<params>

<param name="command">
<xsl:attribute name="value">
<xsl:value-of select="sos:file"/>

</xsl:attribute>
</param>

</params>
</add_order>

</xsl:template>

</xsl:stylesheet>
Example: execute_file_request.xslt

JobScheduler Web Services - execute_file_response.xslt
Software Open Source

March 2015 JobScheduler Web Services page: 27

Appendix B: execute_file_response.xslt

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:sos="http://www.sos-berlin.com/scheduler"

exclude-result-prefixes="soapenv sos" version="1.0">
<xsl:output method="xml" indent="yes"/>

<xsl:template match="/spooler/answer">
<service_response>
<content>
<soapenv:Envelope>
<soapenv:Body>
<xsl:apply-templates select="ERROR | ok"/>

</soapenv:Body>
</soapenv:Envelope>
</content>

</service_response>
</xsl:template>

<xsl:template match="ERROR">
<soapenv:Fault>

<faultcode>SOAP-ENV:Client</faultcode>
<faultstring><xsl:value-of select="@text"/></faultstring>

</soapenv:Fault>
</xsl:template>

<xsl:template match="ok[order]" priority="2">
<sos:orderId><xsl:value-of select="order/@order"/></sos:orderId>

</xsl:template>

</xsl:stylesheet>
Example: execute_file_response.xslt

JobScheduler Web Services - execute_file_forward.xslt
Software Open Source

March 2015 JobScheduler Web Services page: 28

Appendix C: execute_file_forward.xslt

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:sos="http://www.sos-berlin.com/scheduler"

exclude-result-prefixes="soapenv sos" version="1.0">
<xsl:output method="xml" indent="yes"/>

<xsl:template match="order">
<service_request url="http://localhost:5555/replyUrl">
<content>
<soapenv:Envelope>

<soapenv:Body>
<xsl:apply-templates select="payload/params/param[@name='std_out_output']"/>

</soapenv:Body>
</soapenv:Envelope>
</content>

</service_request>
</xsl:template>

<xsl:template match="param[@name='std_out_output']">
<sos:stdOut>
<xsl:value-of select="@value"/>

</sos:stdOut>
</xsl:template>

</xsl:stylesheet>
Example: execute_file_forward.xslt

Web Service, Asynchronous 6

JobScheduler Web Services - Index
Software Open Source

March 2015 JobScheduler Web Services page: 29

Index
W

	1 Abstract
	2 Getting started
	3 Introduction
	4 Use of the JobScheduler for Web Services
	4.1 The Web Service Capability of Programs and
			Scripts
	4.2 Jobs Orchestration using Web Services
	4.3 Routing Web Service Requests

	5 The Asynchronous Web Service Query Process
	6 The synchronous Web Service
	7 Web Service Control
	7.1 Starting a Job
	7.2 Starting a job chain

	8 Configuration of an asynchronous Web Service
	9 Configuration of a Job Chain as an asynchronous Web Service
	9.1 The Style Sheet "request_xslt_stylesheet"
	9.2 The Style Sheet "response_xslt_stylesheet"
	9.3 The Style Sheet "forward_xslt_stylesheet"

	10 Configuration of a synchronous Web Service
	11 The Creation of Jobs for Synchronous Web Services
	A The execute_file_request.xslt Style Sheet
	B execute_file_response.xslt
	C execute_file_forward.xslt
	Index

