Software
(Service

Qrganisation

N

Job Automation

Job Scheduling

JOBSCHEDULER

AP| Documentation
March 2015

Software- und Organisations-Service GmbH Giesebrechtstr. 15 10629 Berlin Germany Telephone +49 30 86 47 90-0

JobScheduler: API 2

Contact Information

Software- and Organisations-Service GmbH
Giesebrechtstr. 15
D-10629 Berlin

Telephone +49 (30) 86 47 90-0
Telefax +49 (30) 8 61 33 35
Mail info@sos-berlin.com

Web www.sos-berlin.com

Software- and Organisations-Service GmbH March 2015

JobScheduler: API 3

Table of Contents

LI L= YT 24
7 - - T Y = 26
20t = 4 o T 26
2. B0 ..o 26
0t I < =1 o) 26
2t B T (=« 26
2.2 0D e 26
2.2 clear_delay _after error e 26
2.2.2 clear_when_directory_changed i 26
2.2.3 configuration_direCIOrY e 27
2.2 4 delay _after errOr 27
2.2.5delay_order_after_setback 28
2. 2. B folder _path ... 29
2. 2. 7 nClude _path . ..o e 29
2.2.8 max_order_setbacks e 29

2 2 D MM . i e e i 29
2210 OFdEI_QUEUE . .. e e ettt e e et et e et e e e et e e e e e e e e e 30
2.2 PrOCESS ClasS . ..ottt ittt e et e e e e e e e 30
2202 FBIMOVE . ..ottt ettt et e et e e et e e e e e e e e e e e 30

2 2 At L 31
2.2.14 start_ when_directory_changed 31

2 2 state eXt .. e 32

2 2 B it L e 32

2 2 T WaAKE . e 32
2.3 Job_chain - job chains for order proCeSSINGuutit it e e e 33
2.3 1 add_end _State 33
2.3 2 add oD . e 33
2.3.3 add_or replace _Ordero e 34
2.3.4 add_Order e 34
2. D NaAMIE e i 34

2 G I T Yo [35
2. 3.7 Order _COUNT .. e e e e 35
2 < o] (o =T o U 1= 11 = 35
2.3.9 0rders_reCOVErabIe e 35
20 Tt 0 (=2 0 = 35
2 Tt B I (14 36
2.4 JOb _Chain _NOGE . .. e 36
2 4 ACH ON . e 36
2 =Y (o g o o [37
R I =Y o 1 ¢ L (= 37
2 o T o 37
2.4 5 NeXt NOAE e 38
2.4 B NeXt State ... e 38

2 A T S At .. 38
2.5 Job_impl - Super Class for a Job or the JobScheduler Script 38
2 8. SPOOT . e e 39
2.5, SPOO0IEr _ClOSEo 39
2.5.3 SPOOIEr Xt . .. e 39
2.5.4 SPOOlEr Nt . ..o e 40
2.5.0 S P00 BT 0D .. e 40
2.5.6 SPOOIET _l0g . .o e 40
A T Ao o T =T o) o T =4 (o] 41

Software- and Organisations-Service GmbH March 2015

JobScheduler: API 4

2.5.8 SPOOIEI 0N SUCCESS ..ottt ettt ettt ettt e et e e e e e e e e e e 41
2.5, SPOOIE O PN .t e 41
2.5.10 SPOOIEI PrOCESS .ttt ittt et et e e e e e e e 41
2. 5. 11 SPOOIEr taSK .. e 42
2.8 LOCK ettt e e e e e e 42
2.6.1 MaX_NON_EXCIUSIVE i e e e e e e e e 42
LG 2 T 41 42
2L TR I =10 0o Y 43
2.7 LOCKS . .ottt e e e 43
2. 7.1 AaddOCK ..ttt e e e 43
2.7 .2 Create _lOCK e 43
A 5 T T o1 43
2.7 A 10CK _OF NUIL .. e e 44
2.8 L0g - LOGOING -ttt ettt e e e e e e e e 44
2 8. dEDUG . . o e 44
2.8, 2 dEDUG T o e 45
2.8 3 dEDUG .. e e 45
2.8, 4 dEbUG S .. e e 45
2.8 5 dEDUGA .. e 45
2. 8.8 dEDUGS .. e e 45
2. 8.7 dEDUGD ... e e aa 45
2. 8. 8 dBDUGT . e e e 46
2.8.0 dEDUGS .. 46
2. 8. 10 dEDUGD .. 46
2 Tt =Y 1 o 46
2. 8.2 fIlBNAMIE . .o 46
2. B A N0 oo e e 46
2. 814 a8t . e 47
2. 8. 15 1At BITOr _lINe ..o e e 47
2. B B LBV . e 47
2 & 0 0 o T 48
2.8 18 10g _filE ..o 48
2.8 A0 Mal .. 48
2.8, 20 Ml it ..o e 48
2.8, 21 Mail O BITOr ..o e 49
2.8.22 Mail 0N PrOCESS ..ottt ittt et e e 49
2.8, 28 Mail_ON SUCCESS ..\ttt it et e e e e e 49
2.8.24 Mail_ON _WaIiNg . ..o e e 50
2.8.25 NeW filename 50
2.8.26 start NeW _file 50
2 8. 2T WA Lt e e e e e e 51
2.9 Mail - e-mail dispatCh e e 51
2.0.1 Aadd_file . oo 51
2.9.2add header field i 51
2.0, 8 Dl . ottt e e e e 51
2.0 4 DOAY ..ot e e e e 52
2 5 T o o 52
2.0, 0 EQUEUE . ..ot i e e 53
2.0.7 dEQUEUE _10Q . . .ottt e e 53
2SR 1) o 53
2.0, QUEUE il ... i e 54
2.0, 10 S L e e 54
2.0 SUD T . . e 55
2,012 00 et e 55
2,913 XSl _Stylesheet 56
2.9.14 xslt_stylesheet path 56

Software- and Organisations-Service GmbH March 2015

JobScheduler: API 5

2.10 Monitor_impl - Using Super Classes for Start Scriptsor Jobs ... 57
2.0, SPOOIET ..t e 57
2.10.2 SPO0IEr _JOD . . 57
2.10.3 SPOO0IEE _l0Q . . et e 58
2.10.4 SpPoO0ler _ProCesSs after 58
2.10.5 spooler_process before 58
2.10.6 SPOOIEr 1aSK e 59
2.10.7 spooler_task after i e 59
2.10.8 spooler_task before i 60

2t T T O o =Y e O o 1 60
2 A At e e 61
2. 11, 2 N S ate ..o e 62
220t 1 T T 62
20t 0 o o T o o - T 62
2.11.5 0D _Chain_NOAe . ..o e 63
2220t Bt 1 T T T AP 63
0t o T o Y- T = o 1= 63
2.8 PAYIOAA . ..o e 63
2. 11,9 PAYIoad IS By P . . 64
20t B 00t O o T 64
21111 remove_from_Job _Chain o i 64
2. 112 rUN M e e e 65
2. 13 SetDACKo 65
2. 1114 setback COUNT ... o i e 65
2 S At . e 65
2. 1110 State Xt .. e e 66
21117 string_next_start time 66
2. 1118 SUSPENAEA e 66
20t Bt T 2 114 67
2. 11, 20 WED SBIVICE ..t e 67
2.11.21 Web_ServiCe OpPeratioN 67
2.11.22 web_service_operation_or _NUIl 68
2.11.23 Web_service or NUIL 69
2.0 24 XMl e e e e 69
21125 XMI_payloado e 69

2.12 Order_queue - The order queue for an order controlled job i, 69
2. 2. IENGEN L e e 70

2. 18 PrOCESS ClasS ..ottt e e 70
2 G TR I o 4 T= ¥ o oY== 70
2.3 2 MM e e e e 70
2.13.3 remote _SCheAUIET e 70
2 B T (=0 0 71

2. 14 PrOCESS ClasSSES ittt e e e 71
2.14.1 add_PrOCESS Class ...ttt e e 71
2.14.2 Create _PrOCESS Class ... ittt et e e e 72
2. 14, 3 PrOCESS ClaSS ..ottt e e 72
2.14.4 process _Class Or NUIL o e 72

2.15 Run_time - Managing Time Slots and Starting Timesottt e e 72
2.5 SCNEAUIE . . e 73
2.0 2 XMl e e 73

216 Schedule - RUNIIMEo e e e e e e e et et ettt 73
208 XMl o e e 73

2.7 SPOOET ... 74
2171 abort_immediately e 74
2.17.2 abort_immediately_and_restart 74
217.3add_Job _Chain e 74

Software- and Organisations-Service GmbH March 2015

JobScheduler: API 6

2.17.4 configuration _dirECIOrY i e 75
217.5 create Job _Chain e 75
2.7 6 Creale OFAEr ...t i i e e 75
2.17.7 create_variable Set e 75
217.8 create _xslt_stylesheet 75
217.9db_history table _name 76
2. 4710 AD NAMIE ..o e e 76
21711 db_order_history_table_name ... 76
2.17.12db_orders table Name ... i 77
21713 db_tasks table name e e 77
2.17.14 db_variables _table nameo e e 77
2 T S dIrE O OTY . . e e 78
2. 17,16 EXBCULE XM Lo i e e 78
27 T ROSINAME . . . i 78
0t 1 01 = T 79
2. 17 10 0NClude _path e e 79
2.7 20 NI Patn o e e 79
2.7 2 S SBIVICE ..ttt i e e e 80
Nt I 0472 o o 80
2.7 .23 0D Chain L 80
2.17.24 Job_Chain_eXiStS e 80
2.17.25let_run_terminate_and _restart e 81
207 26 IOCKS . ..ottt e e e e 81
Nt I 04 A0 o T 81
Nt I < T o T o 1 81
2.7 2 PN .ottt e 82
2.17. 30 PrOCESS ClasSSES . ..ottt ittt e e e e e 82
21731 SChedUIe . ..o e 82
2.7 .32 SUPEIVISOr _ClBNt .. . i et e e e 82
2.7 B3 CD PO .o 83
2 A ermMINa e . ..o 83
2.17.35 terminate_and restart e 84
2.7 30 UAD PO . e e e 84
R A - T 84
2738 Variables e 85
2.18 Spooler_program - Debugging JObS iN Java ..ot 85
2. 10 SUDPIOCESS . ..o ittt 85
2.0 ClOSE .t 86
2.0, BNV e 87
2,103 BNVITONMIENE . . .t e e e 87
2104 eXit COAB ... i e e 87
P2 R I o g o] ¢ ST =Ty (o T 88
2.19.60gN0re_SIgNal e 88
2. 00,7 Kl .. e e 88
2.19.8 OWN_PrOCESS GIOUD . et ettt ettt et ettt e e et e e e et e e e et e e e e e e et e e e 88
2,000 DI oot e e e 89
20 S Bt 0o T] 4 1 /S 89
21910 PHORIY ClaSS ..ottt e 89
2.0 St ..o e 90
21013 erminated e 90
21914 termination_SigNnal o e 91
2.0 S IMEOUL . . . e e 91
2.19.16 wait_for_termination 91
2.20 SUPEIVISOr CliENt e e 91
2,201 ROSINAMIE e e e 92
2,20, 2 0D PO ..t e e 92

Software- and Organisations-Service GmbH March 2015

JobScheduler: API 7

2 T - T 92
22 0 T~ To [[oo 92
2.21.2 call_me_again_when_locks_available 93
2.21.3 changed _direCtOrieso 93
2.271.4 Creale _SUDPIOCESS .. ittt e 93
2.21.5 delay_SPOOIEr PrOCESSttt ittt et et et e e e 93
2. 2.8 BN o e e e e 94
2 I A Y o 94
2.21.8 eXIt COOE ... e 94
2. 21,9 NiStOry _fleld ..o e e e 95
2 20 A0 0 oot e e e e 95
2 2 0D o e e 95
2 Tt 172 o o [95
2. 2 A PANAIMIS ..ot e e 96
2 It o T) 4 1 /S 96
22145 PrIONIEY _Classo e e 97
2. 21,10 TEMOVE DI ..ttt e 97
A I =Y o =Y- | 98
2. 2118 stderr path ..o e e e 98
2. 21,10 stAerr Xt .. e e 98
2.21.20 stdoUt _path ... e e 99
2.21. 27 StOUL teXt ..o e 99
2,21, 22 gl _fIlES .o 99
2.21.23 1y _hold_lOCK . ..o 100
2.21.24 try_hold_lock_nON_eXCIUSIVEo e e 100
2.2 2D WD SBIVICE . ..ttt e e e 101
2.21.26 Web_service _or NUIL e 101

2.22 Variable_set - A Variable_set may be used to pass parameters i, 101
2.2 COUN .« e e e e 102
A (41 o T 102
A B - 1 41 102
2,22 .4 SUDSHULE o e 102
2,22 5 ValUE . .. e 103
70 Y- | 103
2. 2. T XM e e e e e 104

2. 28 WD SBIVICE . it e e 104
2.23.1 forward_xslt_stylesheet_path i 104
2. 23 2 MM . it 105
2 TG T oY= | - 1 0 1= 105

2.24 Web _SerViCe OPeratioN i e e 105
2,24 .1 pEEIr _hOSINAMIE o e e 105
S oY= Y= 1o T 105
2. 24, B reQUEST . ..o e e 106
A B =TT o Yo 1= 106
2. 24 D WD SBIVICE . ..ottt 106

2.25 WeEb _SErViCE reQUEST e 106
2,25 biNary CONtENt .. . 106
2.25. 2 Charset NAME ... e 107
2.2, 3 CONtENt YD . e 107
5 T 1= To [107
2,255 StriNg _CONtENt e 108
2. 2D B UN . e e e e 108

2.26 WED SEIVICE MBS PONSE . ..ottt e e e e e et e e e e e 108
2.26.1 Charset NaME e 108
2.26.2 CONtENE YD .. e 109
2,268, 3 MBS .. e 109

Software- and Organisations-Service GmbH March 2015

JobScheduler: API 8

2,284 SENA .. e e e 109
2.26.5 Status COOE 109
2.26.6 StriNg_CONtENto e 110
2. 27 XSl Stylesheeto e 110
2. 2T APy XMl L e 110
2. 2T 2 ClOS . et e e 110
2.27. 3 10a0_filE .. o e e 110
2. 27 4 10ad XMl ... e e 111

B - 1 - T o 4 o 2\ o 112
B B Or < e e 112
B COE ..o e 112

G TRt 7 1= =Y 4 o 112

B Tt I (=« 112

B 2 JOD e 112
3.2.1 clear_delay_after BrmOr 112
3.2.2 clear_when_directory_changed i e 112
3.2.3 configuration _dirECIONYot e e e e 113

3 2.4 delay _after rmOr 113
3.2.5delay_order_after_setback 114

3 2 B folder _path 115
3. 2. 7 INClude _path e 115
3.2.8 max_order setbacKs ... e 115
32 D MM o e 115

B T2 0 I o =T o U= U 116

B 2.1 PrOCESS ClaSS ..ottt e e 116
B2 2 POV « ..ottt e e e e e e e e e i 116

B 0 1 T - o 117
3.2.14 start._ when_directory_changedo 117

B 2. D state teXl ..o e e 118

B 00 1 T 11 118
B2 17 WaKE . ottt e e 118
3.3 Job_chain - job chains for order proCESSINGttt e et 119
3.3 add _end State e 119
3,32 add oD . e e e 119
3.3.3 add _or replace Order ... e 119
3. 3.4 add Order ... e e 120
3.3 D NaAMIE L e 120
3.3 8 NOAE . 120

B 3.7 Order COUNE ..o e 121

B 3. 8 Order QUEBUE ... ot e e e 121
3.3.90rders _reCoVerable 121

G TR Tt 0 =2 0 = 121

R 0 0 [T 111 122
3.4 J0b _Chain NOe e 122
BiA T AC I ON o 122

B T 2= Y o g T Yo [123
B 3 ITOr Stale ... e 123
B T) o 123
B4 D NEXt NOGE ... e e 124
B4 B next State ... e e 124
B4 S At . e 124
3.5 Job_impl - Super Class for a Job or the JobScheduler Script o i 124
B 0. SPOOIET .. e 125
3.5, 2 SPOOIEI ClOSE .. it 125
3. 0.8 P00l Xt ... e 125
35,4 SPOOIEr Nt ... e 126

Software- and Organisations-Service GmbH March 2015

JobScheduler: API 9

3.5.5 SP00IEr oD .. e 126
3.5.6 SPOOIET _l0g . .o e 126
G TR T =Y o Yo Yo 1= o T o 1= 1) 126
3.5.8 SPOOIEr 0N SUCCESS .. ittt ittt et it ettt e et e e e e e e e 127
3.5, SPOOIE O PN L e e 127
35,10 SPOOIE PrOCESS . vttt ittt et et et e e e 127
3. .11 SP00IEr taSK .. 127
BB LOCK . vttt e e e e 128
3.6.1 MaX_NON_EXCIUSIVE e e e e e e 128
BB 2 MM e e e e e 128
G TG 0 I 1= 0 0o Y 129
3.7 LOCKS . e 129
371 Add 0K ..t e e e 129
BT 2 Create _lOCK . ..o e 129
R 5 T [o1 129
B 7.4 10CK _Or NUIL .. e e 130
3.8 L0g - LOGING ..ottt ettt e e e e e e e 130
3.8 T dEDUG . . o e 130
3.8 2. dEbUG T o 131
3.8 3 dEDUG .. 131
3.8 4 dEbUG S . . 131
3.8 5 dEDUGA .. 131
388 dEDUGS .. 131
3.8 7 dEDUGD ..o 131
3.8 8 dEDUGT .. 131
3.8.0dEbUGS . . 132
3810 dEDUGO .. e e 132
G T Tt B I = 1 o 132
3.8 12 fllBNAMIE . .o e e 132
B B A N0 o 132
3814 1aSt o o e e 132
3. 8.5 1At ITOr _lINe ..o e 133
B B T8 LBV .t 133
G S 0 0 o T 134
3818 10g _file ..o 134
BB A0 Mail ..o e 134
3.8 20 Ml it ..o e 134
3.8 2T Mail O BITOr ..o e e e 135
3.8, 22 Mail 0N PrOCESS ..ottt e e 135
3.8, 28 Mail_ON SUCCESS ... i ittt i i e e e 135
3.8.24 Mail_ON _WarmiNg e e 136
3.8 25 NeW filename 136
3.8.26 start NeW _file 136
B8 2T WA L e 136
3.9 Mail - e-mail dispatCh e e 137
3.0.1 add il . e e 137
3.9.2add header field 137
3.0 8 Dl o ottt e 137
31014 DOAY ..ot e e e 138
300D 00 ittt e 138
B 0.0 AEQUEUE . ..ot e e e 139
3.0.7 deqUEUE _10Q . . .ot e 139
30 B O oo e 139
3.0, QUEUE il ... i e e 140
3010 S o e e 140
3.0 SUD O . . 141

Software- and Organisations-Service GmbH March 2015

JobScheduler: API 10

300 T2 00 ot e e e 141
3,913 XSl _stylesheet 142
3.9.14 xslt_stylesheet path 142
3.10 Monitor_impl - Using Super Classes for Start ScriptsorJobs i 142
B0, SPOOIET . ..t e e 143
3.10.2 SPOOIEr_JOD .. e 143
3.10.3 SPOOIEI_l0Q . . .ot e 143
3.10.4 Spooler_ProCess after 144
3.10.5 spooler_process before 144
3.10.6 SPOOIEr _taSKo 145
3.10.7 spooler_task after i 145
3.10.8 spooler_task beforeo i 146
R O o LY] o [146
0t 0 - 147
BT 2 eNd S ale ..o e 148
0t B 1 T 148
3104 0D CNaIN .o 148
3115 J0b _Chain_NOAe . ..o e 149
G 0t 1 T T o 149
0t o R o7 = o 1= 149
B 1.8 PAYIOAd . ..o e 149
G T B e N o 7= 1 (o = Lo (T 1/ o= 150
G Tt B 0t O o T 150
31111 remove_from_Job _Chaino 150
BT A2 rUN M e e 151
B 13 S DaCKo e 151
31114 setback COUNto e 151
R 0t B T) - 151
B 110 State Xt ..o e 152
31117 string_next_start time 152
B A1 A8 SUSPENAEA e 152
R Tt B T 1 = 153
BT 20 WED SBIVICE . i 153
3.11.21 Web_ServiCe OpPeratioN e 153
3.11.22 web_service_operation_or _NUIl e 154
3.11.23 Web_service Or NUIL 155
B0 24 XMl e e e 155
3125 XMl payload 155
3.12 Order_queue - The order queue for an order controlled job i, 155
B2 IENGEN L 156
313 PrOCESS ClasS ..ottt e e 156
G TRt G TR I 1 4 T= Qi o oY== 156
B3 2 NaAME e 156
3.13.3 remote _SChedUIET ... 156
G Tt B =3 o 157
314 PrOCESS ClasSSES ..ottt e e e e 157
3141 add_PrOCESS Class ...ttt e e e e 157
314 2 create _PrOCESS Class ...ttt e e 158
B4 8 PrOCESS ClaSS . oottt e e 158
3.14.4 process _Class Or NUIL o i e 158
3.15 Run_time - Managing Time Slots and Starting Times e e 158
315 SCheAUIE . ..o e 159
31D 2 XMl e e e 159
3.16 Schedule - RUNIIME e e e e et e et 159
BdB. T XMl oo e e e e e 159
BT S POONE ... 160

Software- and Organisations-Service GmbH March 2015

JobScheduler: API 11

3171 abort_immediately 160
3.17.2 abort_immediately_and_restart 160
3.17.3 add_JOb _Chain .. .o 160
3.17.4 configuration_direCIOrYo e 161
7.5 create Job Chaino e 161
37,6 Creale _OrEr ... e e e 161
37,7 create_variable _Set e 161
3.17.8 create _xslt_stylesheet 161
3.17.9db_history_table _name 162
B 7. 10 AD NAME ..o e 162
3.17.11 db_order_history_table_name 162
3.17.12db_orders table Name ... i e 163
3.17.13 db_tasks table name e e 163
3.17.14 db_variables _table name e 163
BT S dIrECIOrY .o e 163
37,16 eXBCULE XMl .o i e e 164
B 7 A7 ROSINAME e 164
BT A8 I oo 164
3710 0NClude _path e e 165
37 20 NI Path oo e 165
B TR 7 B T =T oV o 166
BT 2 0D .o 166
317,23 0D Chain .o 166
3.17.24 Job_Chain_eXistS e 166
3.17.25let_run_terminate_and restart e 166
B A7 26 IOCKS . ..ottt e e e e e e e e 167
BT 2T 0g . oottt e e e 167
R Tt I 02 T o T o 1 167
BT 20 PN .o e 168
317,30 PrOCESS ClasSSES ..ottt ittt e e e 168
3731 SChedUle . ..o e 168
317,32 SUPEIVISOr _ClENt ... i e e e 168
G TRt 0 1¢I5 (o o N oo A 168
37 34 ermMiNat e . .. e 169
3.47.35 terminate_and _restart e 169
BT, 30 U PO . o e 170
B 7. 37 Variables e 170
3.18 Spooler_program - Debugging JObS iN Javac.iiiiiii i 171
310 SUDPIOCESS . . ittt 171
B0 ClOSE . et e 172
B0 BNV o e 172
3103 BNV ONMENT . . . e e 173
3104 eXit COOB ... e 173
G T e S T o S =Ty o 173
3.19.6 0gN0Ore_SIgNalo 174
3007 Kl ..o e e e 174
3.19.8 OWN_PrOCESS GIOUD .. . c ittt ettt et e et e et et e et e e et e e e et e et e e e e 174
300,00 DI oo e e 174
300 PN Y . et e e e e 175
G Tt e Bt B I o T 2 = = 175
300 At ..o e e 176
3108 erminatedo e 176
3.19.14 termination_Signal 176
310 S MU . . . e 176
3.19.16 wait_for termination 177
3.20 SUPEIVISOr _ClENt ... e 177

Software- and Organisations-Service GmbH March 2015

JobScheduler: API 12

3.20.1 ROSINAMIE . . o e 177
320, 2 0D PO .o e 177
B2 TaSK Lottt e e e e 177
R 07 s =T [[o o 178
3.21.2 call_me_again_when_locks_available 178
3.21.3 changed _direCtOrieso e 178
3.271.4 Creale _SUDPIOCESS .. ittt i e e 179
3.21.5 delay_SPOOIEr _PrOCESSttt ettt e e e e e 179
R 0 =Y oo 179
G T O A Y o 179
3218 eXit COOB ... i e e 180
3. 21,0 NistOry _field ... e 180
B2 0 0 oo e e 180
G 02 e B T o 181
G 322 0t 122 o o [181
B2 A8 PaANAIMIS ..o e e e 181
G 3022 0t o T] 4 1 /S 182
3218 PrIONItY _Class . ..ot e 182
3. 2110 rEMOVE PId .ttt 183
B2 A7 TEPEA . .o e 183
B 2118 stderr pPath ..o e 183
3. 2110 stderr Xt .. e e 184
3.21.20 stdoUt_path ... e e 184
321,27 StdoUt teXt ..o o e 184
3,21, 22 gl _fIlES .o e 184
3.21.23 11y _hold_lOCK . ..o e 185
3.21.24 try_hold_lock_noNn_eXCIUSIVE e 186
3. 21 2D WD SBIVICE . ..ottt e 186
3.21.26 Web_service or NUIL e e 186
3.22 Variable_set - A Variable_set may be used to pass parameters il 187
322 COUN . e e 187
G T A 41 o T 187
312 3 MM . o ittt e e e e 187
B 22,4 Sl VAl .. i e e 188
3,225 SUDSHULE . .. o e 188
3.2, B ValUE . ..o e 188
3227 XMl . e e e e 189
3 23 WD SBIVICE ... it e 189
3.23.1 forward_xslt_stylesheet_path i 189
323 2 MM i e 190
328 B PaANAIMIS ..ottt e e e 190
3.24 Web _ServiCe Operation e 190
3241 peEr _hOSINAMIE o e 190
B T2 S o 1= Y= 1o T 190
B 24, B rqUEST . ..o e e 191
BT B =TT oo 1= 191
B 24 D WD SBIVICE ... it e e 191
3. 25 Wb _SerVICE TEQUEST e e e e 191
3,251 binary _CONtENt 191
3,25, 2 Charset NAME ... e 192
3,253 COoNteNt Y Pe . oo e 192
G 25 - 1= Lo [192
3,255 StriNg _CONtENt e 193
32D B UM . e 193
3.26 WWED SEIVICE TESPOMSE . .ottt ittt ettt et et et ettt e et e e e e e e e 193
3.26.1 Charset NaME e 193

Software- and Organisations-Service GmbH March 2015

JobScheduler: API 13

3.26.2 CONtENt YD . e 194
3.26.3 MBS .. e 194
30264 SENA ..o e e e e 194
3.26.5 Status COOE e 194
3.26.6 StriNg_CONtENto e 195
3,27 XSl _stylesheet 195
3 27 A aPPlY XMl L e e 195
327 2 IS . et e 195
3273 10a0_ il . .ot e e e 195

B 27 4 10ad XMl ... e e 196
o N 197
g T o) 197
A COUR . e 197
e I = Y o 197
g G I = 4 197

A 2 JOD L e e 197
4.2.1 clear_delay _after BITOrt e 197
4.2.2 clear_when_directory_changed i 197
4.2.3 configuration_dir€ClOry i e e 198

4 2.4 delay _afler BITOr ..o e e 198
4.2.5delay_order_after setbacko 199
4. 2.6 folder Path ... 199

4 2. 7 INClUdE _Path .. e 200
4.2.8 max_order SetbacCks e 200
e N o =T o 2T 200
o 1 O o o 1= o [U= 1= 200
4. 2.1 PrOCESS ClasSS ...ttt ittt e e e e 201
g A = o 1[0 1Y 201
g 1 T - | 201
4.2.14 start_when_directory_changed e 202

4 2. 15 State Xt .. 203
00t 1 11 [203
B2 AT WAKE . ..ottt e e e e e e e 203
4.3 Job_chain - job chains for order processingouiiii i 203
4.3 1add end state e 204
4.3.2 add oD ..o e 204
4.3.3 add_or_replace Order i e 204
4. 3.4 add Order ... e e 205
G TR N o =1 0 2T 205
G T N g T T [205
4. 3.7 Order COUN ..ot e e e e 206
TR S o] o [= Y o [1= 1= Y 206
4.3.9 0rders recoverable e 206
G TRt 0 N =Y o 1[0 1Y 206
7t Bt 111 206
4.4 J0b Chain _NOAE 207
A ACH ON L e e 207
A Y o o T Yo [207
4.4, 8 ermOr S ate ... e 208
T o R 208
44 S NEXE NOGE . o e 208
44 B neXt Stale ... e 209
A - | (= 209
4.5 Job_impl - Super Class for a Job or the JobScheduler Script i i 209
4 5.1 SPOOIET . e 210
4.5.2 SPOOIEI _ClOSE ... i e 210

Software- and Organisations-Service GmbH March 2015

JobScheduler: API 14

4. 5.8 SPOOIEr Xt .ot e 210
4. 5.4 SPOOIEr NIt .. e e 210
R TR T] Lo o [T o T o 211
4. 5.6 SPOOIET I0Q . .ot e e 211
T A~ o Lo o (=Y oo T =Y o) (S 211
4.5.8 SPOOIEI 0N SUCCESS ..\ttt itt ettt ettt ettt e et e e e e e e e 211
4.5, SPOOIEE O PN .ottt e 212
45,10 SPOOI BT PrOCESS .t ittt ettt ettt e et e e e e e e 212
4. 5,11 SPOOIEr aSK ..o 212
B LOCK ..ottt e e e e e e 213
4.6.1 MaX_NON_EXCIUSIVE\ttt e e et e e e e 213
G T2 o - 0 21 213
TR N =Y 100 1Y 213
A I o T < T 214
471 add_lOCK . .o 214
47 2 create OCK e e 214
7 B 00K e e e e 214
A 7.4 10CK _Or NUIL ..o 214
4.8 L0g - LOGOING . noi ittt e e 215
4 8.1 dEUG . .ot 215
4 8.2 debUGT o 215
4 8.3 dEDUGZ . . o 216
4 8.4 dEbUGS . o 216
4 8.5 dEDUGA . .o e 216
4 8.6 dEDUGD . .. e 216
4 8.7 dEDUGD . .. o 216
4 8.8 dEDUGT ..o e e 216
4.8.0 dEbUG . .. e 216
4.8. 10 dEDUGT .. e 217
8 TRt =Ty o T 217
4 8.2 flENaMIE . . oot e 217
Tt 1 T) o 217
4 8.1 1ast . oo e 217
4. 8.15 ast errOr _lINe .. o e e 217
4 8. 1B BVl . e 218
Tt I T Yo 218
4 8. 18 10G Ml . oo e e e aa 219
4. 8.0 Ml .ttt e e e e e 219
4.8.20 Malil it ..o e 219
7 32 I o= V1 o o T =Y 1 (o 219
4.8.22 Ml ON PrOCESS . .\ttt it ettt ettt e e e e e e e e e e e e 220
4.8.23 MaAil_ON SUCCESS .ottt ittt it ettt ettt e et e e et e e e 220
4.8.24 Mail_ON _WaININgGottt e e e e e 221
4.8.25 NeW _fillename 221
4.8.26 start_ NeW _file 221
R T4 Y- | o 221
4.9 Mail - e-mail dispatCh e e 221
491 add_file ... 222
4.9.2add _header field 222
e R 2 o o o 222
R o T | 223
S R I o o 223
4.0, 0 EQUEBUE . ..ottt e e e 224
4.9.7 EQUEUE _I0Qottt ittt et e e e 224
TR o 224
4,00 QUEBUE il ... i e e e 225

Software- and Organisations-Service GmbH March 2015

JobScheduler: API 15

4010 S oo e e 225
40T SUD BT .. e 226
e g (o 226
4.9.13 XSIt_Stylesheet e 226
4.9.14 xslt_stylesheet_path 227
4.10 Monitor_impl - Using Super Classes for Start ScriptsorJobs i 227
4101 SPOOIET .t 228
4.10.2 SPOO0IEr 0D .. 228
4.10.3 SPOO0IEI _0g . . oot 228
4.10.4 SpO0ler_ProCesS _after i 229
4.10.5 spooler_process before 229
4.10.6 SPOOIEr _task ... e 230
4.10.7 spooler_task after i 230
4.10.8 spooler_task before i 231
g B O o =T O o =Y 231
g B 1t - | 232
411 2 end _Stale ... e e 233
g B 1 I T 233
g B I T o T o o -1 1 P 233
4.11.5Job_Chain_NOAe e 234
g B T Yo 234
e T A o 7= = 3 1= 234
41,8 PaYIoaqd . . o e 234
411,09 payload IS Y P . oo 235
7 S o e 0 o4 o 1 235
4.11.11 remove_from_Job_Chaino e 235
A2 TUN M oo e e 236
4113 S DACK . .o 236
41114 setback _COUNt i e i 236
g B Ot 1 = | (- 236
A 1116 State teXt .. e 237
4.11.17 string_next_start_time e 237
41118 SUSPENAEAo e 237
g B Rt 1 I 11 238
411,20 WED SEIVICE ... e e 238
4.11.21 Web_Service Operationo i e 238
4.11.22 web_service_operation_or _NUll 239
4.11.23 Web _service or NUIL e 240
g B T o 1 240
44125 XMI_payload 240
4.12 Order_queue - The order queue for an order controlled job i i, 240
A 2. 1eNgth L e 241
4 A8 PrOCESS ClasSs ...ttt e e 241
4131 MAX PrOCESSES . vttt ittt ettt et ettt e et e e e e e e e e e e 241
g G T2 4 - 01 241
4.13.3 remote_SChedUIET e 242
g G T =Y o o 1Y 242
414 PrOCESS ClaSSS ..ottt ittt ittt e e e 242
4.14.1 add_ProCESS Class . ..ottt ittt e e e e e e 243
4.14.2 Create ProCESS Classttt i e e e e 243
414, 8 PrOCESS ClasS ..ottt ittt e e e 243
4.14.4 process_cClass_Or NUIlL i e e e 243
4.15 Run_time - Managing Time Slots and Starting TImest i 243
4151 SChedUIE ... e 244
A 2 XM L e e e 244
4.16 Schedule - RUNIME e e e e e e e 244

Software- and Organisations-Service GmbH March 2015

JobScheduler: API 16

g 1 T 0o 1 244
AT SPOOIET . o 245
4.17.1 abort_immediately e 245
4.17.2 abort_immediately_and_restart 245
4.17.3 add_JOb _Chain ... 246
4.17.4 configuration_dir€CtOrYt e 246
417.5 create_Job _Chain 246
47,6 Create Order ... e 246
4.17.7 create_variable _Setl e e 246
4.17.8 create_xslt_stylesheet e 247
4.17.9db_history_table name 247
41710 dD NAME ... e e 247
4.17.11 db_order_history_table_name e 248
41712 db_orders _table name ... e e 248
4.17.13 db_tasks table Name i e e 248
4.17.14 db_variables table Name i e 248
S 0 5 T o 11 Yo o 249
417,16 EXECULE XMl ..o i i e e e 249
A7 7 NOS NAMIE . . e e e e 250
g 1 A 1 o 250
4. 17.100nClUde _Path . o e e 250
47, 20 NI Path L 251
A7 20 IS SBIVICE o ittt e e e e 251
g A o Y o 251
417,23 0D Chain .. e 251
4.17.24 0D _Chain XISt .. .o e 252
4.17.25 let_run_terminate_and restart e e 252
g I 7 o o1 < 252
g A 0 o o 252
g I 7 o o o T 252
O I S I o Y- - | o o PP 253
4.17.30 PrOCESS ClaSSES . ittt ittt ettt e e e e e e e 253
4.17.31 SChedUIE . ..o e 253
4.17.32 SUPEIVISOr ClIENt .. i i e e e e e e e e 253
e A 3 2 (] o T o Yo) 254
A 7 (Y g] = (= 254
4.17.35 terminate_and _restart e e 255
A 1T T o T oo A 255
g A A - | 255
4.7.38 variables e 256
4.18 Spooler_program - Debugging Jobs in Javat 256
410 SUDPIOCESS . . ittt ittt e 256
4100 ClOSE . oot e 257
A0 BNV 258
4.10.3 BNVITONMIEN . . .o e e e e e 258
4104 eXit COUE ... e 259
S e TR TN (o oy Y =T o) 259
4.19.6 IgNOre_SIgNal . ..o e e 259
A0, T Kill o e e e e 259
4.19.8 OWN_PrOCESS_GIOUP - .« e et ettt e ettt e et et e e et et e et e e e e e e e et e et e e e e 260
40,0 P ot e e 260
g e Tt O N o T 260
g e T B oy o 1 Y o= T T 261
g R 2 - o 261
41013 terminated . ..o e 262
4.19.14 termination_Signal e 262

Software- and Organisations-Service GmbH March 2015

JobScheduler: API 17

410 S IMEOUL . . 262
4.19.16 wait_for _termination 262
4,20 SUPEIVISOr _CliENt e e 263
4.20.1 NOSINAMIE . . . e e e 263
0 22 (] o T o o) 263
A 20 TaSK ot 263
4201 ada Pid . oo e e e e 263
4.21.2 call_me_again_when_locks_available 264
4.21.3 changed _direCtories 264
4,214 Create SUDPIOCESS .. ittt ettt e e e e 264
4.21.5 delay _SPOOIEr _PrOCESSttt ettt e et e e e e e 264
g T =3 T 265
g A=Y 4 o 265
4218 eXIt COUE ... e 265
4.21.9 history _field e 266
g T o 266
2t T T T o 266
g Ot 17 o o T 267
A I B 0T = 1= 267
g O o T 267
4218 PHOMIY ClasS .. oottt e 268
4. 21,10 FEMOVE DI . oo e e e 268
I I A (=Y 1= | PP 269
4 2118 stderr_path ... o e 269
4 2110 St eXt . e e 269
4.21.20 StdoUt _path ..o e 270
4,21, 21 StAOUL Xt . e 270
A A T To = 1 =T 270
4.21.23 11y _NOId_OCK . ..ot e e 271
4.21.24 try_hold_loCK_NON_eXCIUSIVE e 271
4 21 2D WED SBIVICE . i e e 272
4.21.26 Web_Service Or NUIL 272
4.22 Variable_set - A Variable_set may be used to pass parameters 272
422 COUNT . e e 273
A 1 1Y (o = 273
A N 4T 01 273
Y= (- | 273
4.22.5 SUDSHIULEo 274
422,86 ValUE 274
S A - | L 274
2 I (1 1 275
4 23 Ve SEIVICE .. . e e 275
4.23.1 forward_xslt_stylesheet_path i 276
2 T 4 - o 21 276
G TR B 0¥ - | o 1= 276
4.24 Web _Service Operation e 276
4. 24 1 peEr _NOSINAME .. . e e e 276
A o Y=Y =Y o o P 277
4 24 B rEQUEST . . 277
==Y o To] -7 Y 277
4 24 5 WED SEIVICE .. i e 277
4.25 Web _service requUest i e e 277
4,251 bINary CONteNt ... i 277
4,25 2 CharSel NAMIE ... i e 278
4. 25,3 CONtENt P ..o 278
o N g =T =T [278

Software- and Organisations-Service GmbH March 2015

JobScheduler: API 18

4.25.5 StriNg CONteNt 279
D B UNl oo e e 279
4,26 WWED SEIVICE MBS PONSE . ..ttt e e e e e 279
4.26.1 CharSel NAMIE ... i 279
4. 26,2 CONtENt YD ..o e 280
4. 26.3 AT . ..o e 280
.26.4 SENA ..ottt e e e e e e 280
4.26.5 StatlUs _COUEo i e e e 281
4.26.6 StiNg CONteNto e 281
427 Xslt_stylesheeto 281
A 27 A apPlY XMl e e 281
0 o[1= - 282
4.27.310ad_file .. o e 282

4 27 4 load XMl . e 282

LIV ST o T o N o 283
5 0t I 1 o 283
Lo 0t Pt T o T [283

Lo TRt 7 T =Y 4 o 283
B B Xt oo e e e e e 283

B 2 0D e 283
5.2.1 clear_delay_after ermOr i 283
5.2.2 clear_when_directory_changed i e 283
5.2.3 configuration_dir€CIONYot e e e 284

B 2.4 delay _after rmOr ... 284
5.2.5delay_order_after_setback 285

B 2 B folder path ... 286

B 2. 7 iNClude _path 286
B.2.8 max_order setbacKs ... e 286

D 2 D NaAMIE o e 286

Lo T2 0 I o [= T o U= U 287

B 2.1 PrOCESS ClaSS ..ottt e e 287
B 2 2 POV . ..o e e 287

B 2.1 S At . o e 288
5.2.14 start_ when_directory_changed 288

B 2. D state teXl .. o e e 289
LS00 1 T 11 289

B 2 17 WaKE . ettt e e 289
5.3 Job_chain - job chains for order proCeSSINGoiuit it e e 290
5.3 add _end _State e 290
5.3, 2 add oD .o e e 290
B5.3.3 add _or replace Order ... e 290
.34 add Order ... e e 291

B 3 D NaAMIE L e 291
.3 B NOAE . 291

B 3.7 Order COUNL L. e e 292

D 3. 8 Order QUEBUE . ..o e e e 292
B.3.90rders reCcoverable e 292
.3 A0 FBIMOVE . ..ottt e e e e e 292
ST 0 o 111 293
5.4 J0b _Chain NOe e 293
A ACH ON . o i 293
D 2 BITOr NOAE ..o e e e 294
D B ImOr Stale ... e 294
LG 3 T) o 294
D D NEXt NOGE ... e e 295
D4 B next Stale .. o e e 295

Software- and Organisations-Service GmbH March 2015

JobScheduler: API 19

B A7 State ..o e 295
5.5 Job_impl - Super Class for a Job or the JobScheduler Scripto i i 295
D D SPOOIET ... e e e 296
.5, 2 SPOOIEI ClOSE .. i 296
B 0.8 SPOOIEr BXit ... e e e 296
B 5.4 SPOOIEr NIt ... e 297
B.5.5 SP00IEr oD .. e 297
B.5.6 SPOOIET _l0g . .o e 297
LT oI A=Y o Yo To1 1= o T o 1= 1) (P 297
B, 5.8 SPOOIEr DN SUCCESS .. ittt ettt it ettt e et e e e e e e e 298
B, 5.0 SPOOIE O PN . e e 298
B, 5. 10 SPOOIET PrOCESS . vttt ittt ittt et e e e e e 298
B .11 SPOOIEr taSK .. e e 298
BB LOCK . vttt e e e 299
B5.6.1 MaX_NON_EXCIUSIVE i e e e e e e e e e e 299
DB 2 MM . e e 299
D B 3 TBIMOVE . ..ottt e e e 300
D7 LOCKS .t e 300
D71 add 0K ..ot e e 300
B 7.2 Create _lOCK e e 300
LG 5 T (o o1 G 300
DT A 10CK _Or NUIL .. e e 301
5.8 L0g - LOGING ..ttt ettt e e e e e 301
B BT dBDUG . . oo 301
B8 2 dEDUG T . 302
B8 3 dEbUG .. 302
B84 dEbUG S .. 302
B 8. D dEDUGA .. 302
B 8.8 dEDUGS .. 302
B .7 dEDUGG ... 302
B 8.8 dEDUGT .. 302
B.8.0 dEbUGS .. 303
B 8.0 dEDUGD .. e 303
Lo < Tt Bt = 1 o 303
B B 12 fIlBNAMIE . . e e e e 303
B B A INT0 o 303
B B 14 St . oo e e 303
B 8.5 1ast ITOr LN ..o e 304
B B T8 LBV .ttt e 304
LGS 20 0 o T 305
.8 18 10g _file ..o 305
B B A0 Mal ..o e e 305
B8 20 Ml it .. e e e 305
B 8. 2T Mail 0N BITOr . .o e 306
D822 Mail 0N PrOCESS ..ottt e 306
.8, 28 Mail 0N SUCCESS . ..ottt et e e e e e 306
5.8.24 Mail_On _Warming e e 307
5.8.25 NeW filename 307
B5.8.26 start NewW _file 307
D 8 2T WA L e 307
5.9 Mail - e-mail dispatCh e e 308
5.0.1 add il . et 308
5.9.2add header field i 308
B0 8 Dl . ottt 308
51014 DOAY ..ot e e 309
B0, D Bl ittt e e 309

Software- and Organisations-Service GmbH March 2015

JobScheduler: API 20

D0 B AEQUEUE . ..o e e 310
B.0.7 deqUEUE 10Q . . .o e 310
B0 B O o 310
B0, QUEUE il ... i 311
D010 S . e e e 311
B 0. SUD . o 312
B0 T2 00 oot e e e e 312
5,913 XSl _Stylesheet e 313
5.9.14 xslt_stylesheet path 313
5.10 Monitor_impl - Using Super Classes for Start ScriptsorJobs o 313
D10, SPOOIET ...ttt 314
5.10.2 SPOO0IEr_JOD .. e 314
B5.10.3 SPOOIEI_l0Q . .. et 314
5.10.4 Spooler_proCess _after i 315
5.10.5 spooler_process before 315
B5.10.6 SPOO0IEr _taSK i e 316
5.10.7 spooler_task after i 316
5.10.8 spooler_task before i 317
D11 OrdEr = OBl .ttt e e e e e e e e 317
L5 0t 0 - 318
D1 2 eNd S ale .. o e 319
L5 0t 1 T 319
114 oD CNaIN .. 319
5115 J0b _Chain_NOAe . .. o e 320
L5 0t Bt 1 T T 320
D, T PANAIMIS ittt e e e e 320
D 8 PAYIOAd . ..o e 320
51,0 PAYIOad IS By P ..ot 321
£5 0t B 0t O o T 321
5.11.11 remove_from_job _Chain i 321
DT A2 rUN M L e e 322
D13 S DaACKo e 322
D114 setback COUNt ... o i e 322
LS 0t Bt T T - 322
D110 State Xt ..o e 323
51117 string_next_start time 323
D1 18 SUSPENAEA e 323
LS00 T 2 1= 324
D1, 20 WED SBIVICE . i e 324
5.11.21 Web_ServiCe OpPeratioN e 324
5.11.22 web_service_operation_or NUIl e 325
B.11.23 Web_service Or NUIL e 326
B 24 XMl e e e 326
5125 XMl payload 326
5.12 Order_queue - The order queue for an order controlled job i, 326
B 2. IENGEN L e 327
B3 PrOCESS ClasS ..ottt e 327
LTt G TR I 1 4 T= Q] o oY= =T 327
D3 2 NaAM . e 327
5.13.3 remote _SChedUIET e 327
D34 FBIMOVE . ..ot e e 328
.14 PrOCESS ClasSS S ..ottt ittt e e e 328
5141 add _PrOCESS Class ...ttt e e e e 328
B.14.2 create _PrOCESS Classttt e e 329
D14, B PrOCESS ClaSS . ottt e 329
5.14.4 process _Class Or NUIL i e e 329

Software- and Organisations-Service GmbH March 2015

JobScheduler: API 21

5.15 Run_time - Managing Time Slots and Starting Times e 329
D15 SCNEAUIE . ..o e 330
B 2 XMl . e e 330

5.16 Schedule - RUNIIME e e e e e e et 330
BB XMl e e e e e 330

BT S POONE ... 331
5171 abort_immediatelyo e 331
5.17.2 abort_immediately_and_restart e 331
B5.17.3 add_Job _Chaino 331
5.17.4 configuration_direCIOry 332
BA7.5 create Job Chain e 332
D7 .6 Creale _OrEr ... i e e e 332
B.A7.7 create_variable _Set ... e 332
5.17.8 create _xslt_stylesheet 332
5.17.9db_history _table _name e 333
D710 AD NAMIE .. 333
5.17.11 db_order_history_table_nameo 333
5.17.12db_orders table Name ... i e 334
5.17.13 db_tasks table name e e 334
5.17.14 db_variables _table name i e 334
DT S dIrEC Ty . .o e 334
D716 eXBCULE XMl .o i i e e 335
D7 AT ROSINAME e 335
LG 0t 100 - T 335
B 7. 10 0NClude _path ... e e e 336
D7 20 NI Patn L o e 336
D7 2T 1S SBIVICE ..ttt i e e e 337
D7 2 0D .o 337
B.17.23 JOb Chain ..o 337
5.17.24 Job_Chain_eXistS e 337
5.17.25let_run_terminate_and restart e 337
BT 26 IOCKS . ..ottt e e e e e e e 338
LS00 A0 o T 338
LSt I 02 T o T o 1 338
D7 20 PN .o e 339
B.17.30 PrOCESS ClasSSES ...ttt ittt e e e e 339
B.7.31 SChedUle . ..o e 339
D17, 32 SUPEIVISOr _ClBNt ... e e e 339
L0t 0 1C T (o o N oo 339
D 34 ermMINat e . ..o 340
5.47.35 terminate_and _restart e e 340
D7, 30 UAD PO . e e e e 341
BT B VAl o e e 341
7,38 Variables e 341

5.18 Spooler_program - Debugging JObS iN Javaiiuiiiiii e e 342

D10 SUDPIOCESS . . ittt 342
D0 ClOSE . i e 343
D0, 2 BNV o e 343
510,83 BNV ONMENT . . . e 344
D104 eXit COOB ... e e 344
LT R I T g o ¢ S =Ty o T 344
B5.19.6 IgN0Ore_SIgNal 345
B 0.7 Kill ..o e e e e 345
5.19.8 OWN_PrOCESS GIOUD .. . e ettt ettt et e et e et et e et e e e e e e e et e e e e e e e 345
B 10.0 DI ..ottt e e 345
D00 PN Y . et e e e 346

Software- and Organisations-Service GmbH March 2015

JobScheduler: API 22

LTt R Bt Bt I o T 2 = = 346
B0 St ..o e 347
5103 erminatedo e 347
51914 termination_Signal 347
D0 S MU . . . i 347
5.19.16 wait_for termination 348
5,20 SUPEIVISOr _ClENt i 348
5,201 ROSINAMIE . . o e 348
L2 220 (o o T o oI 348
B 2 TaSK . ettt e e e 348
LS 072 0 =T [[o o 349
5.21.2 call_me_again_when_locks_available 349
5.21.3 changed _direCtorieso 349
D214 Creale _SUDPIOCESS .. ittt i e 350
5.21.5 delay_SPOO0IEr _PrOCESSttt et e e e e 350
B 2.8 BN . e e e aa 350
LS A Y o 350
.21, 8 eXit COOB ... i e e 351
5. 21,0 NistOry _field ... o 351
B 210 0 oot e 351
B2 0D o e 352
Lo A 0t 12 o o [352
D 2 A PaANAIMIS ..o e e e 352
B2 A P ONI Y . e e e e 353
5.2 48 PrIONtY _Class . ..ot 353
B 21,10 rEMOVE PId ..ttt e 354
L2 g 1 = o = Y- | 354
B 2118 stderr Path .. o 354
B 2110 stderr Xt .. e 355
B5.21.20 stdoUt_path ... 355
D21, 21 stdoUt teXt ..o e 355
521,22 gl _fIlES .o 355
5.21.23 1y _hold_lOCK . ..o e 356
5.21.24 try_hold_lock_non_eXCIUSIVE e 357
B 21 2D WD SBIVICE ...ttt e e 357
B5.21.26 Web_service or NUIL e 357
5.22 Variable_set - A Variable_set may be used to pass parameters il 358
B 2 COUN .. e 358
L0 A 41 o T 358
B2 3 MM . it e 358
B 22 4 Sl VAl .. e e 359
5.2, 5 SUDSHULE 359
B 2 B ValUE . .. e 359
Lo Y- | 360
B 22 8 XM . e e 360
B 23 WD SBIVICE ... i e 361
5.23.1 forward_xslt_stylesheet_path i 361
B 23 2 MM . e 361
D 2. B PaAMAIMS ..ot e 361
5.24 Web _ServiCe Operation e 361
B 24 .1 peer _hOSINaMIE o e 362
LI S oY= Y= | o T 362
D 24, B rqUEST . ..o e e 362
D 24 4 TS PO ettt et e e e 362
D 24 D WD SBIVICE ... i 362
5,25 Wb SerVICE TEQUEST i e e 363

Software- and Organisations-Service GmbH March 2015

JobScheduler: API 23

5,251 binary _CoNtENt 363
D25, 2 Charset NaME ... e 363
5.2, 3 CoNteNt Y P .. e 363
Lo T 1= To [364
5,255 StriNg _CONtENt e 364

B 2D B UM . e e e e 364
oI Y= o Y=Y Vi (oY (Y- o o o 7= 364
B.26.1 Charset NaME e 365
5.26.2 CONtENt Y P . e 365

B 26,3 BT .. e 365

B 28,4 SENA ..t e e e 366
B.26.5 status COOE e 366
5.26.6 StriNg_CONtENto e 366
5. 27 XSl stylesheet e 366
B 2T APy XMl L e e 367

B 2T 2 IS . e e 367

B 27. 3 10ad_ il .. o e 367

B 27 A 10ad XMl ... e e 367

g T =G 368

Software- and Organisations-Service GmbH March 2015

Overview 24

1 Overview

Supported Languages:

Java <script Provides jobs in Java.
language="Java
ll>
java:Jav | <script Provides jobs in JavaScript. Usage of the "Rhino with Beans" implementation.

aScript | language="java:
JavaScript">

javax.scri | <script Provides the script language Rhino, that implements the "javax.script" scripting API.
ptrhino | language="java |Other script languages implementing the "javax.script" scripting API can be used
x.script:rhino"> [with <script language="javax.script:language">.

Spiderm | <script Provides jobs in JavaScript. Usage of the "spidermonkey" Implementation. Only
onkey language="Spid | available on 32 bit.
(32bit) ermonkey">

PowerSh | <script Provides jobs in Jobs in PowerShell. Only available on Windows.
ell language="Pow
erShell">

VBScript | <script Provides jobs in Jobs in VBScript. Only available on Windows.
language="VBS
cript">

Perl <script Provides jobs in Perl.
language="Perl"
>

Jobs which use the JobScheduler APl may be implemented in Java, JavaScript (the Mozilla Spidermonkey
implementation) and Perl (Perl 5.8 is supported for Unix and an ActiveState implementation is required for
Windows). In addition, JScript, VBScript and Powershell scripting languages are available on Microsoft Windows
systems.

Since JobScheduler Version 1.3.10 the javax.script package is supported. Using this plugin different
implementations for a lot of script languages such as javascript (Rhino implementation), groovy and python are
available. The Spidermonkey implementation for javascript is marked as "deprecated".

Since JobScheduler Version 1.5 the Spidermonkey implementation of javascript is available only on 32 bit. For
using javascript on 64 bit choose the "Rhino with Beans" implementation. This implementation is available on 32 bit
as well as on 64 bit. The "Rhino with Beans" implementation is an extension to rhino and it replaces the
Spidermonkey implementation. The "Rhino with Beans" implementation suits the purpose to port already existing
javascript jobs to 64 bit. The usage of both implementations differs slightly, see: Differences between the
Spidermonkey and "Rhino with Beans" engines

The following table shows the used engine dependent on the language attribute in <script language="...">

Spidermonkey Spidermonkey -—-

java:JavaScript Rhino with Beans Rhino with Beans
In the language attribute the values "Spidermonkey" and "JavaScript" are equivalent (Spidermonkey engine).

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/mediawiki/index.php/Differences_between_the_spidermonkey_and_%22rhino_with_beans%22_engines

Overview 25

Furthermore in the language attribute the values "java:JavaScript", "java:Rhino" and "java:ECMAScript" are
equivalent ("Rhino with Beans" engine).

In order to use the API in Powershell, a seperate download and installation of the JobScheduler Powershell
Adapter is required. See http://sourceforge.net/apps/mediawiki/jobscheduler/index.php?title=JSApi_Powershell

Jobs are implemented according to the Job impl_interface. JobScheduler objects may be accessed using this
interface either directly or indirectly.

Software- and Organisations-Service GmbH March 2015

http://sourceforge.net/apps/mediawiki/jobscheduler/index.php?title=JSApi_Powershell

Java API

26

2 Java API

The following classes are available for Java:

2.1 Error

2.1.1 code

The error code

Syntax: Sstring error. code ()

2.1.2 is_error

true, should an error have occurred

Syntax: boolean error. is_error ()

2.1.3 text

The error text (with error code)

Syntax: string error. text ()

2.2 Job

A task can either be waiting in the order queue or be running.

2.2.1 clear_delay_after_error

Resets all delays which have previously been set using delay after error

Syntax: void spooler_job. clear delay after_ error ()

2.2.2 clear_when_directory_changed

Resets directory notification for all directories which have
start when directory changed()

previously been

set using

Software- and Organisations-Service GmbH

March 2015

Java API 27

Syntax: void spooler_job. clear when_directory_changed ()

2.2.3 configuration_directory
Directory for the job configuration file should dynamic configuration from hot folders be used
Syntax: string spooler_job. configuration_directory ()

»» when a job does not come from a configuration directory.

2.2.4 delay_after_error
Delays the restart of a job in case of an error
Syntax: void spooler_job.set delay after error (int error steps, double seconds)

Syntax: void spooler_job.set delay after error (int error steps, String hhmm ss)

Example:

spooler job.set delay after error(2, 10); // A 10 second delay after the
2nd consecutive error

spooler job.set delay after error(5, "00:01"); // One minute delay after the
5th consecutive error

spooler job.set delay after error(10, "24:00"); // A delay of one day after the
10th consecutive error

spooler job.set delay after error(20, "STOP"); // The Job is stopped after the

20th consecutive error

Should a (first) error occur whilst a job is being run, the JobScheduler will restart the job immediately.
However, after between two and four consecutive errors, the JobScheduler will wait 10 seconds before restarting the
job;

After between five and nine consecutive errors, the job will be restarted after a delay of one minute; After between ten
and nineteen errors, the delay is 24 hours.

The job is stopped after the twentieth consecutive error.

A delay can be specified, should a particular number of errors occur in series. In this case the job will be terminated
and then restarted after the time specified.

This method call can be repeated for differing numbers of errors. A different delay can be specified for each new
method call.

It is possible to set the value of the seconds or hhmm ss parameter to "sTop" in order to restrict the number of
(unsuccessful) repetitions of a job. The job then is stopped when the number of consecutive errors specified is
reached.

A good position for this call is spooler init() ..

See <delay after error>..

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 28

Parameters:

error_steps The number of consecutive errors required to initiate the delay

seconds_or_hhmm_ss The delay after which the job will be rerun

2.2.5 delay_order_after_setback
Delays after an order is setback
Syntax: void spooler_job.set delay order after_setback (int setback count, double seconds)

Syntax: void spooler_job.set delay order_ after_setback (int setback count, String hhmm ss)

Example: in javascript

spooler job.delay order after setback(1) = 60; // for the 1lst and 2nd
consecutive setbacks of an order:

// delay the order 60s.
spooler job. delay order after setback(3) = "01:00"; // After the 3rd consecutive

setback of an order,
// the order will be delayed an hour.

spooler job. max order setbacks = 5; // The 5th setback sets the order
to the error state

A job can delay an order which is currently being carried out with order. setback() _. The order is then positioned
at the rear of the order queue for that job and carried out after the specified time limit.

The number of consecutively occurring setbacks for an order is counted. The delay set after a setback can be
changed using delay order after setback in the event of consecutively occurring setbacks.

See
<delay order after setback>_,

Order. setback() _,

Job. max order setbacks,_,

Job chain. add job() _,

Job. delay after error() ..

Parameters:

setback _cou The number of consecutive errors and therefore setbacks for a job. The setback delay can be
nt varied according to this parameter.

seconds_or_ Time limit for the setback of the order. After expiry of the time limit, the order is reprocessed in the
hhmm_ss same job.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 29

2.2.6 folder_path
The directory in which the job is to be found.
Syntax: string spooler_job. folder_path ()

»» when the job does come from the local (<config configuration directory="">) configuration file.

Returns the job part relative to the live directory. The path is to start with a slash ("/") and all path components are
to be separated by slashes.

Examples:

. "/somewhere/excel" will be returned for the
c: \scheduler\config\live\somewhere\excel\sample. job. xml job;

. n /" returned for the c: \scheduler\config\live\sample. xml job and

. " (an empty string) returned for a job outside the live directory.

2.2.7 include_path

Value of the -include-path= option
Syntax: String spooler_job. include_path ()

See -include-path_.

2.2.8 max_order_setbacks

Limits the number of setbacks for an order
Syntax: void spooler_job.set max_order_setbacks (int)

An order state is set to "error" (see Job chain node. error state_) when it is set back more than the number of
times specified here (see order. setback()).

See Job. delay order after setback. and<delay order after setback is maximum="yes">_.

2.2.9 name
The job path beginning without a backslash
Syntax: string spooler_job. name ()

See <job name="">_.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 30

2.2.10 order_queue

The job order queue

Syntax: Order queue_ spooler_job. order_queue ()

Example: in javascript

spooler log.info('order=' + (spooler job.order queue ? "yes" : "no"));

Every job order (<job order="yes">_) has an order queue. This queue is filled by the job chain to which the job
belongs.

See Job chain. add order() _, and Job chain. add job() _.

Returned value:
Order queue_

null, should the job have no queue (for <job order="no">).

2.2.11 process_class

The process class
Syntax: Process class_ spooler_job. process class ()

See <job process class="">_.

Returned value:
Process class_

2.2.12 remove

Removes a job
Syntax: void spooler_job. remove ()

The job is stopped - i.e. current tasks are terminated and no new ones are started. The job will be removed as soon
as no more tasks are running.

Tasks queuing are ignored.
When no job task is running, the remove() function deletes the job immediately.

Job orders (<job order="yes">_) cannot be removed.

See <modify job cmd="remove">_ .

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 31

2.2.13 start

Creates a new task and places it in the task queue

Syntax: _Task_ spooler_job. start (Variable set variables (optional))

Example:

spooler. job(

"job a").start();

sos. spooler. Variable set parameters =

spooler. create variable set();

spooler. job(

parameter. set var(
parameter. set var(

"job a").start(

"my parameter", "my value");
"other parameter", "other value");

parameters);

The parameters are available to the Task. params_task. Two parameters are particularly relevant here:

"spooler tas
k name"

gives the task a name which then appears in the status display, e.g. in the web interface.

"spooler sta
rt after”

specifies a time in seconds (real number), after which the task is to start. The JobScheduler <
run_time>_is ignored in this case.

See spooler. create variable set() _, Spooler. job_, Variable set. value_.

Returned value:
Task_

2.2.14 start_when_directory_changed

Monitors a directory and starts a task should a natification of a change be received

Syntax: void spooler_job. start_when_directory_changed (java.io.File directory path, String
filename pattern (optional))

Syntax: void spooler_job. start_when_directory_changed (java.io.File directory path, String
filename pattern (optional))

Syntax: void spooler_job. start_when_directory_changed (String directory path)

Syntax: void spooler_job. start_when_directory_changed (
filename pattern (optional))

String directory path, String

Example: in javascript
spooler job.start when directory changed("c:/tmp");

// only relevant for files whose names do not end in "~".
spooler job.start when directory changed("c:/tmp", "*.*["~]$");

Should there not be a task belonging to this job running and a notification be received that a change in the directory
being monitored has occurred (that a file has been added, changed or deleted), then this change can be used to
prompt the JobScheduler to start a task if the current time falls within that allowed by the <run time> parameter.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 32

This method can be called a more than once in order to allow the monitoring of a number of directories. A repeat
call can also be made to a directory in order to reactivate monitoring - if, for example, it has not been possible to
access the directory.

This method call can be coded in the JobScheduler start script or in the spooler init() _method. In the latter
case, the job must have been started at least once in order for the method call to be carried out. The <run time
once="vyes" > setting should be used for this.

The job should be regularly <run time repeat=""> restarted and <delay after error>_set.

The same setting can be made in the XML configuration using the <start when directory changed>_element.

Parameters:
directory_path the address of the directory being monitored

filename patte restricts monitoring to files whose names correspond with the regular expression used.
rn

2.2.15 state_text

Free text for the job state

Syntax: void spooler_job.set state_text (String)

Example:

spooler_job. set state text("Step C succeeded");

The text will be shown in the HTML interface.

2.2.16 title

The job title

Syntax: string spooler_job. title ()

Example:

spooler log.info("Job title=" + spooler job.title());

See <job title="">_,

2.2.17 wake

Causes a task to be started

Syntax: void spooler_job. wake ()

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 33

Starts a task, should the job have the pending or stopped states.

See Job. start() _.

2.3 Job_chain - job chains for order processing

A job chain is a series of jobs (job chain nodes). Orders ((order_) proceed along these chains.

Every position in a job chain is assigned a state and a job. When an order is added to the job chain, it is enqueued
by the JobScheduler according to the state of the order. The job assigned to this position then carries out the order.

Additionally, each position in a job chain has a successor state and an error state. The JobScheduler changes the
state of an order after each job in the job chain has been processed. Should the job step return
(spooler process) true, then the JobScheduler sets the succeeding state; otherwise it sets the error state. The
order then moves to another position in the job chain as defined by the new state. However, this does not apply
when the state is changed during execution with order. state._.

A job chain is created using spooler.create job chain() _; it is filled using Job chain. add job() _and

Job chain. add end state() _and finally made available with spooler. add job chain() .

Every node is allocated a unique state. Therefore either Job _chain. add job() Or Job chain. add end state()
must be called once for every state.

Example:

Job chain my job chain = spooler.create job chain();
my job chain.set name("JobChain");

my job chain.add job("job 100", 100, 200, 999)
my job chain.add job("job 200", 200, 1000, 999)
my job chain. add end state(999);

my job chain. add end state(1000);

spooler. add job chain(my job chain);

’
’

2.3.1 add_end_state

Adds the end state to a job chain
Syntax: void job_chain. add_end_state (String state)

This state is not assigned a job. An order that reaches the final state has completed the job chain and will be
removed from the chain.

2.3.2 add_job

Adds a job to a job chain

Syntax: void job_chain. add_job (String job name, String input state, String output state,
String error state)

Software- and Organisations-Service GmbH March 2015

Java API 34

2.3.3 add_or_replace_order

Adds an order to a job chain and replaces any existing order having the same identifier

Syntax: void job_chain. add_or_replace_order (Order order)

Should the job chain already contain an order with the same identifier, then this order will be replaced. More
accurately: the original order will be deleted and the new one added to the job chain.

As long as an existing order having the same identifier as the new order is being carried out, both orders will be
present. However, the original order will have already been deleted from the job chain and database; it is only
available to the current task and will completely disappear after it has been completed.

In this case the JobScheduler will wait until the original order has been completed before starting the new one.

See Job chain. add order() _and Order. remove from job chain()

2.3.4 add_order

Adds an order to a job chain

Syntax: void job_chain. add_order (Order order)

Should an order already exist on another job chain, then the JobScheduler removes the order from this other chain.
An order is allocated to the job order queue corresponding to its state, and positioned according to its priority.

The job chain must be specified for the JobScheduler using <job chain> 0Or Spooler. add job chain() _.

Should an order with the same order. id_already exist in a job chain, then an exception with the error code
SCHEDULER-186 _is returned. However, see also Job chain. add or replace order() _.

Returned value:
Order_

2.3.5 name
The name of a job chain
Syntax: void job_chain.set name (String)

Syntax: string job_chain. name ()

Example:

Job chain job chain = spooler.create job chain();
job chain. set name("JobChain");

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm?help_URL=scheduler.messages.htm#message_SCHEDULER-186

Java API 35

2.3.6 node

The job chain nodes with a given state

Syntax: Job chain node_ job_chain. node (String state)

Returned value:
Job chain node_

2.3.7 order_count

The number of orders in a job chain

Syntax: int job_chain. order_count ()

2.3.8 order_queue

= node(state). job().order queue()

Syntax: Order queue_ job_chain. order_queue (String state)
Returns the order queue which has a given state.

Returned value:
Order queue_

2.3.9 orders_recoverable

Syntax: void job_chain.set orders recoverable (boolean)
Syntax: boolean job_chain. orders_recoverable ()

See <job chain orders recoverable="">_,

2.3.10 remove
Job chain deletion
Syntax: void job_chain. remove ()

Should orders in a job chain still be being processed (in spooler process() _) when the chain is to be deleted,
then the JobScheduler will wait until the last order has been processed before deleting the chain.

Orders remain in the database. Should a new job chain be added which has the same name as a deleted job chain
(spooler. add job chain() _), then the JobScheduler will reload any orders from the original job chain which have

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 36

remained in the database. Note however, that the states of the orders in the new job chain should be the same as
those in the original chain at the time of its deletion.

2.3.11 title

Syntax: void job_chain.set title (String)
Syntax: string job_chain. title ()

See <job chain title="">_.

2.4 Job_chain_node

A job chain node is assigned a position in a job chain (_Job chain_). The following elements make up a job chain
node: a state, a job, a successor state and an error state.

A job chain node is created either using Job chain. add job() OF Job chain. add end state()

2.4.1 action
Stopping or missing out job chain nodes
Syntax: void node.set action (String)

Syntax: string node. action ()

Example:

Job chain node job chain node = spooler.job chain("my job chain"). node(100);
job chain node. set action(Job chain node. ACTION NEXT STATE);

This option is not possible with distributed job chains.
Possible settings are:

action="process"
This is the default setting. Orders are carried out.

action="stop"

Orders are not carried out, they collect in the order queue.

action="next_state"
Orders are immediately handed over to the next node as specified with next state.

See also <job chain node. modify action="">_.

Character string constonants are defined in Java:
. Job_chain node. ACTION PROCESS

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API

37

. Job chain node. ACTION STOP
. Job chain node. ACTION NEXT STATE

2.4.2 error_node

The next node in a job chain in the event of an error

Syntax: Job_chain node_ node. error_node ()

Example:

Job chain node job chain node = spooler. job chain("Jobchain").node(100);
spooler log. debug("error state=" + job chain node. error node().state()); //
"state=999"

Returned value:
Job chain node_

null, in the event of no error node being defined (the error state has not been specified)

2.4.3 error_state

State of a job chain in event of an error

Syntax: string node. error_state ()

Example:

Job chain node job chain node = spooler. job chain("Jobchain").node(100);

spooler log. debug("error state=" + job chain node. error node().state()); //
state=999"

"error

2.4.4 job

The job allocated to a node

Syntax: Job_ node. job ()

Example:

Job chain node job chain node = spooler. job chain("Jobchain").node(100);

spooler log. debug("job=" + job chain node. job().name()); //
"job=job 100"

Software- and Organisations-Service GmbH

March 2015

Java API

38

Returned value:
Job_

2.4.5 next_node

Returns the next node or null if the current node is assigned the final state.

Syntax: Job chain node_ hode. next_node ()

Returned value:
Job chain node_

2.4.6 next_state

The order state in a job chain after successful completion of a job

Syntax: string node. next_state ()

Example:
Job chain node job chain node = spooler. job chain("Jobchain").node(100);
spooler log. debug("next state=" + job chain node. next state()); //
"state=200"

2.4.7 state

The valid state for a job chain node

Syntax: string node. state ()

Example:

Job chain node job chain node = spooler. job chain("Jobchain").node(100);
spooler log.info("state=" + job chain node. state()); //
"state=100"

2.5 Job_impl - Super Class for a Job or the JobScheduler Script

Job methods are called in the following order:

Software- and Organisations-Service GmbH

March 2015

Java API 39

spooler init()
spooler open()
spooler process()
spooler process()

spooler close()
spooler on success() or spooler on error()

spooler exit()

None of these methods must be implemented. However, it is usual that at least the spooler process() _method is
implemented.

An error during carrying out a job script whilst loading or during spooler init() Causes spooler on error() ..to
be called. The job is then stopped and spooler exit() called (although spooler init() _has not been called!).
The script is then unloaded.

Note that spooler on error()_must also be able to handle errors which occur during loading or in
spooler init() ..

Note also that spooler exit() _is called even though spooler init() has not been called.

2.5.1 spooler

The JobScheduler base object

Syntax: Spooler_ spooler

Example:

spooler log.debug("The working directory of the JobScheduler is " +
spooler. directory());

Returned value:
Spooler_

2.5.2 spooler_close
Task end
Syntax: void spooler_close ()

This method is called after a job has been completed. The opposite of this method is spooler open() .

2.5.3 spooler_exit

Destructor

Syntax: void spooler_exit ()

Software- and Organisations-Service GmbH March 2015

Java API 40

Is called as the last method before the script is unloaded. This method can be used, for example, to close a
database connection.

2.5.4 spooler_init
Initialization
Syntax: boolean spooler_init ()

The JobScheduler calls these methods once before spooler open() _. This is analog to spooler exit() _. This
method is suitable for initializing purposes (e.g. connecting to a database).

Returned value:
boolean

false ends a task. The JobScheduler continues using the spooler exit() _method. When the task is processing
an order, then this return value makes the JobScheduler terminate the job with an error. That is, unless a repeated
start interval has been set using Job. delay after error

2.5.5 spooler_job

The job object

Syntax: Job_ spooler_job

Example:

spooler log.info("The name of this job is " + spooler job.name());

Returned value:
Job

2.5.6 spooler_log

Event logging object

Syntax: Log_ spooler_log

Example:

spooler log. info("Something has happened");

Returned value:
Log_

Software- and Organisations-Service GmbH March 2015

Java API 41

2.5.7 spooler_on_error
Unsuccessful completion of a job
Syntax: void spooler_on_error ()

Is called at the end of a job after an error has occurred (after spooler close() but before spooler exit()).

2.5.8 spooler_on_success
Successful completion of a job
Syntax: void spooler_on_success ()

This method is called by the JobScheduler after spooler close() _and before spooler exit() _; should no error
have occurred.

2.5.9 spooler_open

The Start of a Task
Syntax: boolean spooler_open ()

This method is called immediately after spooler init() _. The opposite of this method is spooler close() ..

2.5.10 spooler_process

Job steps or the processing of an order

Syntax: boolean spooler_process ()

Processes a job step.

An order driven job stores the current order in Task. order .

The default implementation returns false. The implementation of an order driven job can set the successor state for
an order by returning true.

Returned value:
boolean

In the event of standard jobs <job order="no">_: false the JobScheduler ends processing of this job; true> the
JobScheduler continues calling the spooler process() _method.

In the event of order driven jobs <job order="yes">_: false the order acquires the error state (s.
Job chain node_and <job chain node>_). true the order acquires the next state or is terminated if the next state
is the final state. This, however, does not apply when the state is changed during execution using order. state_.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API

42

2.5.11 spooler_task

The task object

Syntax: Task_ spooler_task

Example:

spooler log.info("The task id is " + spooler task.id());

Returned value:
Task_

2.6 Lock

See also <lock name="">_.

Example: in javascript

var locks = spooler. locks;
var lock = locks.create lock();
lock. name = "my lock";

locks. add lock(lock);

2.6.1 max_non_exclusive
Limitation of non-exclusive allocation
Syntax: void lock.set_max_non_exclusive (int)

Syntax: int lock. max_non_exclusive ()

The default setting is unlimited (231-1), which means that with <lock. use exclusive="no">_any number of

non-exclusive tasks can be started (but only one exclusive task).
The number cannot be smaller than the number of non-exclusive allocations.

See also <lock max non exclusive=""> .

2.6.2 name

The lock name

Syntax: void lock.set name (String)
Syntax: string lock. name ()

The name can only be set once and cannot be changed.

Software- and Organisations-Service GmbH

March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 43

See also <lock name="">_.

2.6.3 remove

Removes a lock

Syntax: void lock. remove ()

Example: in javascript

spooler. locks. lock("my lock").remove();

A lock can only be removed when it is not active - that is, it has not been allocated to a task and it is not being used
by a job (<lock. use>).

See also <lock. remove> .

2.7 Locks

2.7.1 add_lock

Adds a lock to a JobScheduler

Syntax: void locks. add_lock (Lock lck)

2.7.2 create_lock
Creates a new lock
Syntax: Lock_ locks. create lock ()

Returns a new lock Lock_. This lock can be added to the JobScheduler using Locks. add lock() _.

Returned value:
Lock_

2.7.3 lock

Returns a lock

Syntax: Lock_ locks. lock (String lock name)

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 44

An exception will be returned if the lock is unknown.

Returned value:
Lock_

2.7.4 lock_or_null

Returns a lock

Syntax: Lock_ locks. lock_or_null (String lock name)

Returned value:
Lock_

null, when the lock is unknown.

2.8 Log - Logging
The spooler 1og method can be used in a job or in the JobScheduler start script with the methods described here.
Notification by e-mail

The JobScheduler can send a log file after a task has been completed per e-mail. The following properties define in
which cases this should occur.

. Log. mail on error,,

. Log. mail on warning_,

. Log. mail on process,,

* Log. mail on success_and
. Log. mail it

Only the end of a task - and not the end of an order - (i.e. spooler process() _) can initiate the sending of e-mails.
However, see Task. end() _.

The Log. mail_method makes the Mail_object available, which in turn addresses the mails.

Example:

spooler log. info("Something for the Log");

spooler log.set mail on warning(true);

spooler log.mail().set from ("scheduler@company. com");
spooler log.mail().set to ("admin@company. com");
spooler log.mail().set subject("Task ended");

2.8.1 debug

Debug message (level -1)

Syntax: void spooler_log. debug (String line)

Software- and Organisations-Service GmbH March 2015

Java API

45

2.8.2 debug1

Debug message (level -1)

Syntax: void spooler_log.

2.8.3 debug?

Debug message (level -2)

Syntax: void spooler_log.

2.8.4 debug3

Debug message (level -3)

Syntax: void spooler_log.

2.8.5 debug4

Debug message (level -4)

Syntax: void spooler_log.

2.8.6 debugb

Debug message (level -5)

Syntax: void spooler_log.

2.8.7 debugb

Debug message (level -6)

Syntax: void spooler_log.

debugl

debug?2

debug3

debug4

debug5

debug6

String

String

String

String

String

String

line

line

line

line

line

line

Software- and Organisations-Service GmbH

March 2015

Java API 46

2.8.8 debug?

Debug message (level -7)

Syntax: void spooler_log. debug7 (String line)

2.8.9 debug8

Debug message (level -8)

Syntax: void spooler_log. debug8 (String line)

2.8.10 debug9

Debug message (level -9)

Syntax: void spooler_log. debug9 (String line)

2.8.11 error

Error Message (Level 1)
Syntax: void spooler_log. error (String line)

A job stops after a task has ended, should an error message have been written in the task log (spooler 1og_)and
<job stop on error="no">_not have been set.

2.8.12 filename

Log file name

Syntax: string spooler_log. filename ()

2.8.13 info

Information message (Level 0)

Syntax: void spooler_log. info (String line)

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 47

2.8.14 last
The last output with the level specified
Syntax: string spooler_log. last (int level)

Syntax: string spooler_log. last (String level)

2.8.15 last_error_line

The last output line with level 2 (error)

Syntax: string spooler_log. last_error_line ()

2.8.16 level

Limit protocol level
Syntax: void spooler_log.set level (int)

Syntax: int spooler_log. level ()

Defines the level with which protocol entries should be written. Every protocol entry is given one of the following
categories: error, warn, info, debugl t0 debug9 (debugl is the same as debug).

Only messages above the level specified will be given out.

The meanings of the numerical values are:

-9to-2: debug9 to debug?2
-1: debug

0: info

1: warn

2: error

The -10g-1evel option has precedence over this parameter.

The factory. ini _(section[job] , entry 1og level=..) setting is overwritten by this parameter.

The factory. ini _(section[spooler], entry 1og level=..) setting is overwritten by this parameter.

Only messages above the level specified will be given out.

The meanings of the numerical values are:

-9to-2: debug9 to debug?2

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API

48

-1: debug
0: info
1: warn
2: error
2.8.17 log

Writes in the log file with the specified level.

Syntax: void spooler_log. 1log (int level, String line)

2.8.18 log_file

Adds the content of a file to the log file

Syntax: void spooler_log. 1og file (java.io.File path)

Syntax: void spooler_log. log_file (String path)

Log the content of a file with level O (info). An error occurring whilst accessing the file is logged as a warning.

Note that when executed on a remote computer with <process class remote scheduler="">_the file is read

from the JobScheduler's file system and not that of the task.

2.8.19 mail

E-mail settings are made in the Mai1 Object

Syntax: void spooler_|log.set mail (Mail)

Syntax: Mail_ spooler_log. mail ()

Returned value:
Mail_

2.8.20 mail_it

Force dispatch

Syntax: void spooler_log.set mail it (boolean)

If this property is set to true, then a log will be sent after a task has ended, independently of the following settings:

Software- and Organisations-Service GmbH

March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 49

Log. mail on error_, Log.mail on warning_, Log.mail on success_, Log.mail on process_ and

Log. mail on error_.

2.8.21 mail_on_error

Sends an e-mail should a job error occur. Errors are caused by the Log. error() _method or by any exceptions that
have not been caught by a job.

Syntax: void spooler_log.set mail_on_error (boolean)

Syntax: boolean spooler_log. mail_on_error ()

Content of the e-mail is the error message. The log file is sent as an attachment.

The factory. ini (section] job] , entry mail on error=..) setting is overwritten by this parameter.

The factory. ini _(section[spooler], entrymail on error=..) setting is overwritten by this parameter.

Content of the e-mail is the error message. The log file is sent as an attachment.

2.8.22 mail_on_process

Sends an e-mail should a job have successfully processed the number of steps specified. Steps are caused by the
spooler process() _methods:

Syntax: void spooler_|log.set mail_on_process (int)

Syntax: int spooler_log. mail_on_process ()

Causes the task log to be sent when a task has completed at least the specified number of steps - i.e. calls of
spooler process() _. Because non-API tasks do not have steps, the JobScheduler counts each task as a single
step.

Content of the e-mail is the success message. The log file is sent as an attachment.

The factory. ini _(section[job] ,entrymail on process=..) setting is overwritten by this parameter.

The factory. ini _(section[spooler], entrymail on process=..) setting is overwritten by this parameter.

Content of the e-mail is the success message. The log file is sent as an attachment.

2.8.23 mail_on_success

Sends an e-mail should a job terminate successfully.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 50

Syntax: void spooler_log.set mail_on_success (boolean)

Syntax: boolean spooler_|log. mail _on_success ()

The success message forms the content of the e-mail. The log file is sent as an attachment.

The factory. ini _(section[job],entrymail on success=..) setting is overwritten by this parameter.

The factory. ini _(section[spooler],entrymail on success=..) setting is overwritten by this parameter.

The success message forms the content of the e-mail. The log file is sent as an attachment.

2.8.24 mail_on_warning
Sends an e-mail should a job warning occur. Warnings are caused by the Log. warn() _method.
Syntax: void spooler_log.set mail_on_warning (boolean)

Syntax: boolean spooler_log. mail_on_warning ()

The warning forms the content of the e-mail. The log file is sent as an attachment.

The factory. ini _(section[spooler], entrymail on warning=..) setting is overwritten by this parameter.

The warning forms the content of the e-mail. The log file is sent as an attachment.

2.8.25 new_filename

A new name for the log file

Syntax: void spooler_log.set new filename (String)
Syntax: string spooler_log. new_filename ()

Sets the name of the log file. The JobScheduler copies a log into this file after a log has been made. This file is
then available to other applications.

2.8.26 start_new file

Only for the main log file: closes the current log file and starts a new one

Syntax: void spooler_log. start_new file ()

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 51

2.8.27 warn

Warning (Level 2)

Syntax: void spooler_log. warn (String line)

2.9 Mail - e-mail dispatch

See Log. mail .

2.9.1 add_file

Adds an attachment

Syntax: void mail. add_file (String path, String filename for mail (optional) , String
content type (optional) , String encoding (optional))
Example:
spooler log.mail().add file("c:/tmp/l.txt", "1.txt", "text/plain", "quoted-printable"
)
Parameters:
path path to the file to be appended
filename for mail The file name to appear in the message
content_type "text/plain" is the preset value.
encoding €.g. "quoted printable"

2.9.2 add_header _field

Adds a field to the e-mail header

Syntax: void mail. add_header field (String field name, String value)

2.9.3 bcc
Invisible recipient of a copy of a mail, (blind carbon copy)
Syntax: void mail.set bee (String)

Syntax: string mail. bee ()

Software- and Organisations-Service GmbH March 2015

Java API 52

Example:

spooler log.mail().set bcc("hans@company.com");

Multiple addresses (separated by commas) can be specified when the hostware uses JavaMail to send e-mails.

See javax.mail.InternetAddress.parse(String).

The factory. ini _(section[job] , entry 1og mail bcc=..) setting is overwritten by this parameter.

The factory. ini _(section[spooler], entry 1og mail bcc=..) setting is overwritten by this parameter.

Multiple addresses (separated by commas) can be specified when the hostware uses JavaMail to send e-mails.

See javax.mail.InternetAddress.parse(String).

2.9.4 body
Message content
Syntax: void mail.set body (String)

Syntax: string mail. body ()

Example:

spooler log.mail().set body("Job succeeded");

Line feed / carriage return is coded with \n (chr(10) in VBScript).

295cc
Recipient of a copy of a mail, (carbon copy)
Syntax: void mail.set cc (String)

Syntax: string mail. cc ()

Example:

spooler log.mail().set cc("hans@company.com") ;

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://java.sun.com/products/javamail/javadocs/javax/mail/internet/InternetAddress.html#parse(java.lang.String)
http://java.sun.com/products/javamail/javadocs/javax/mail/internet/InternetAddress.html#parse(java.lang.String)

Java API 53

Multiple addresses (separated by commas) can be specified when the hostware uses JavaMail to send e-mails.

See javax.mail.InternetAddress.parse(String).

The factory. ini (section] job] , entry 1og mail cc=..) setting is overwritten by this parameter.

The factory. ini _(section[spooler], entry 1og mail cc=.) setting is overwritten by this parameter.
Multiple addresses (separated by commas) can be specified when the hostware uses JavaMail to send e-mails.

See javax.mail.InternetAddress.parse(String).

2.9.6 dequeue
Repeated attempts can be made to send messages from the queue dir directory
Syntax: int mail. dequeue ()

See Mail. dequeue log,, factory.ini (section[spooler].entrymail queue dir=.).

Returned value:

int

The number of messages sent

2.9.7 dequeue_log

The dequeue() log

Syntax: string mail. dequeue log ()

Example: in javascript

var count = spooler log.mail.dequeue();
spooler log. info(count + " messages from mail queue sent");
spooler log. info(spooler log.mail.dequeue log);

See Mail. dequeue() _.

2.9.8 from
Sender
Syntax: void mail.set from (String)

Syntax: string mail. from ()

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://java.sun.com/products/javamail/javadocs/javax/mail/internet/InternetAddress.html#parse(java.lang.String)
http://java.sun.com/products/javamail/javadocs/javax/mail/internet/InternetAddress.html#parse(java.lang.String)
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 54

Example:

spooler log.mail().set from("scheduler@company.com");

The factory. ini _(section[job], entry 1og mail from=..) setting is overwritten by this parameter.

The factory. ini _(section[spooler], entry 1og mail from=..) setting is overwritten by this parameter.

2.9.9 queue_dir
The directory used for returned e-mails
Syntax: void mail.set queue _dir (String path)

Syntax: string mail. queue_dir ()

E-mails which cannot be sent (because, for example, the SMTP server cannot be contacted) are stored in this
directory.

In order to send these e-mails later it is necessary to write a job which calls up the Mail. dequeue() method.

This setting is generally made in sos. ini (section| mail], entry queue dir=..).

Environment variables (e.g. sHOME) are replaced by this attribute (see Settings which Allow Environment Variables
to be Called).

The factory. ini _(section[job] , entry mail gqueue dir=..) setting is overwritten by this parameter.

The factory. ini _(section[spooler], entry mail gqueue dir=..) setting is overwritten by this parameter.

The sos. ini (section] mail], entry queue dir=..) setting is overwritten by this parameter.

2.9.10 smtp

The name of the SMTP server
Syntax: void mail.set smtp (String)

Syntax: string mail. smtp ()

Example:

spooler log.mail().set smtp("mail.company.com");

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 55

These settings are generally made using sos. ini_(section[mail], entry smtp=..).

smtp=-queue stops e-mails being sent. Instead mails are written into the file specified in queue dir. See also
sos. ini (section[mail], entry queue only=..).

The factory. ini_(section[job] , entry smtp=..) setting is overwritten by this parameter.

The factory. ini _(section[spooler], entry smtp=...) setting is overwritten by this parameter.

The sos. ini (section[mail], entry smtp=..) setting is overwritten by this parameter.

2.9.11 subject
Subject, re
Syntax: void mail.set subject (String)

Syntax: string mail. subject ()

Example:

spooler log.mail().set subject("Job succeeded");

The factory. ini _(section] job] , entry 1og mail subiject=..) setting is overwritten by this parameter.

The factory. ini _(section| spooler], entry log mail subiject=..) setting is overwritten by this parameter.

2.9.12to
Recipient
Syntax: void mail.set to (String)

Syntax: string mail. to ()

Example:

spooler log.mail().set to("admin@company.com");

Multiple addresses (separated by commas) can be specified when the hostware uses JavaMail to send e-mails.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 56

See javax.mail.InternetAddress.parse(String).

The factory. ini _(section[job] , entry 1og mail to=..) setting is overwritten by this parameter.

The factory. ini _(section[spooler], entry log mail to=..) setting is overwritten by this parameter.

Multiple addresses (separated by commas) can be specified when the hostware uses JavaMail to send e-mails.

See javax.mail.InternetAddress.parse(String).

2.9.13 xslt_stylesheet

The XSLT style sheet for e-mail processing. Before sending an e-mail the JobScheduler creates an XML document
containing the e-mail headers, subject and body. The content of these elements can be adjusted or overwritten by
an individual XSLT style sheet. This can be used e.g. to create translations of e-mail content. Having processed the
XSLT style sheet the JobScheduler sends the resulting content of the XML elements as e-mail.

Syntax: xslt stylesheet_ mail. xslt_stylesheet ()

Returned value:
Xslt stylesheet_

The XSLT style sheet as a string

2.9.14 xslt_stylesheet_path
The path and file name of the XSL style sheet for e-mail processing.
Syntax: void mail.set xslt_stylesheet path (java.io. path path)

Syntax: void mail.set xslt_stylesheet path (String path)

Example:

spooler log.mail().set xslt stylesheet path("c:/stylesheets/mail. xslt");

The path to the XSLT style sheet. XSLT style sheets are used by the JobScheduler for the preparation of e-mails.
At the time of writing (April 2006) this subject is not documented.

<config mail xslt stylesheet="..">
Parameters:
path The path of the file containing the XSLT style sheet

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://java.sun.com/products/javamail/javadocs/javax/mail/internet/InternetAddress.html#parse(java.lang.String)
http://java.sun.com/products/javamail/javadocs/javax/mail/internet/InternetAddress.html#parse(java.lang.String)
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 57

2.10 Monitor_impl - Using Super Classes for Start Scripts or Jobs

A job can be given a monitor using <monitor>_.

A monitor can provide the following methods:

Monitor impl. spooler task before()
Before starting a task - can prevent a task from being started.

Monitor impl. spooler task after()
After a task has been completed.

Monitor impl. spooler process before()

Before spooler process() _- this method can S'[Op spooler process() _from being called.

Monitor impl. spooler process after()
After spooler process() - can be used to change its return value.

2.10.1 spooler

The JobScheduler Object

Syntax: Spooler_ spooler

Example:

spooler log. debug("The working directory of the JobScheduler is " +
spooler. directory());

Is the same object as spooler_in the Job impl class.

Returned value:
Spooler_

2.10.2 spooler_job

The Job Object

Syntax: _Job_ spooler_job

Example:

spooler log.info("The name of this job is " + spooler job.name());

Is the same object as spooler job_ inthe Job impl class.

Returned value:
Job_

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API

58

2.10.3 spooler_log
Writing Log Files

Syntax: Log_ spooler_log

Example:

spooler log. info("Something has happened");

Is the same object as spooler log_ inthe Job impl class.

Returned value:
Log_

2.10.4 spooler_process_after

After spooler process()

Syntax: boolean spooler_process_after (boolean spooler process result)

Example:

public boolean spooler task after(boolean spooler process result)

{
spooler log.info("SPOOLER TASK BEFORE()");

spooler process result);
return spooler process result; // Unchanged result

}

throws Exception

spooler log.info("spooler process() didn't throw an exception and delivered "

The JobScheduler calls this method after spooler process() _has been carried out.

Parameters:

spooler_process The return value from the spooler process() _is setto false, should spooler process()

_result have ended with an exception.

Returned value:
boolean

Replaces the return value from the spooler process() _method or false, should spooler process() have ended

with an error.

2.10.5 spooler_process_before

Before spooler process()

Syntax: boolean spooler process_before ()

Software- and Organisations-Service GmbH

March 2015

Java API

59

Example:

public boolean spooler process before() throws Exception

{
spooler log.info("SPOOLER PROCESS BEFORE()");
return true; // spooler process() will be executed

Example:

public boolean spooler process before() throws Exception

{

boolean continue with spooler process = true;

if(! are needed ressources available())

{
spooler task.order().setback();
continue with spooler process = false;

return continue with spooler process;

This method is called by the JobScheduler before each call of spooler process() ..

Returned value:
boolean

false prevents further calls to spooler process() _. The JobScheduler continues as though false had been

returned by spooler process() false.

2.10.6 spooler_task

The Task Object

Syntax: Task_ spooler_task

Example:

spooler log.info("The task id is " + spooler task.id());

Is the same object as spooler task_in the Job impl class.

Returned value:
Task_

2.10.7 spooler_task_after

After Completing a Task

Software- and Organisations-Service GmbH

March 2015

Java API

60

Syntax: void spooler_task_after ()

Example:

public void spooler task after() throws Exception

{
spooler log.info("SPOOLER TASK AFTER()");

}

This method is called by the JobScheduler after a task has been completed.

2.10.8 spooler_task before

Before Starting a Task

Syntax: boolean spooler_task_before ()

Example:

public boolean spooler task before() throws Exception
{
spooler log. info("SPOOLER TASK BEFORE()");
return true; // Task will be started
//return false; // Task will not be started

This method is called by the JobScheduler before a task is loaded.

Returned value:
boolean

false does not allow a task to start and Monitor impl. spooler task after() will not be called.

2.11 Order - Order

See JobScheduler Documentation, spooler. create order() , Job chain. add order() _, Task. order_.

File order

A file order is an order with for which the scheduler file path parameter has been set: Order. params_.

Variable set. value()

See JobScheduler Documentation.

Software- and Organisations-Service GmbH

March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 61
Example: An Order with a simple Payload, in javascript
// Create order:
{
var order = spooler.create order():;
order. id = 1234;
order. title = "This is my order";
order. state text = "This is my state text";
order. payload = "This is my payload";
spooler. job chain("my job chain").add order(order);
}
// Process order:
function spooler process()
{
var order = spooler task.order;
spooler log. info("order. payload=" + order. payload);
return true;
}
Example: Creating an Order with a Variable_set as a Payload, in javascript
// Create order:
{
var variable set = spooler.create variable set();
variable set.value("param one") = "11111";
variable set.value("param two") = "22222";
var order = spooler.create order();
order. id = 1234;
order. payload = variable set;
spooler. job chain("my job chain").add order(order);
}
// Process order:
function spooler process()
{
var order = spooler task.order;
var variable set = order. payload;
spooler log.info("param one=" + variable set.value("param one"));
spooler log.info("param two=" + variable set.value("param two"));
return true;
}
2111 at
The order start time
Syntax: void orderset at (String| DATE)
Example:
order. set_at("now+60"); // set_at(String)
order. set_at(new Date(new Date().getTime() + 60 * 1000)); // set at(
java. util. Date)
spooler. job chain("my job chain").add order(order);
Software- and Organisations-Service GmbH March 2015

Java API 62

| |

Used to set the start time before an order is added to an order queue. The following can be specified as a string:

° " now"

. "yyyy-mm-dd HH: MM : SS]"
. "now + HH: MM : SS]"

o "now + seconds"

This setting changes start times set by order. run time Or Order. setback() _.

See <add order at="">_.

2.11.2 end_state

The state that should be reached when an order has been successfully completed
Syntax: void orderset end state (String)
Syntax: string order. end_state ()

When an order has its own end_state other than "" then it is considered to be completed after the job allocated to
this end state has been completed and before the order otherwise leaves this state (see <job chain node>_for
example to continue to another job which usually comprises a part of the job chain).

The state specified has to reference a valid state of a job node in the job chain.

2.11.31id

Order Identification
Syntax: void orderset id (String)
Syntax: string order. id ()

Every order has an identifier. This identifier must be unique within a job chain or job order queue. It should also
correspond to the data being processed. Normally database record keys are used.

When an id is not set, then the JobScheduler automatically allocates one using Job chain. add order() _.

2.11.4 job_chain

The job chain containing an order
Syntax: Job chain_ order. job_chain ()

Returned value:
Job chain_

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API

63

2.11.5 job_chain_node

The job chain nodes which correspond with the order state

Syntax: Job chain node_ order. job_chain_node ()

Returned value:
Job chain node_

2.11.6 log

Order log

Syntax: Log_ order. log ()

Example:

spooler log. info("For both order log and task log");

spooler task. order. log. info("Only for order log, not for task log");

Returned value:
Log_

2.11.7 params
The order parameters
Syntax: void orderset params (Variable set)

Syntax: variable set_ order. params ()

params is held in order. payload_, the latter cannot, therefore, be used together with params.

See <add order>_.

Returned value:
Variable set_

2.11.8 payload
Load - an order parameter.
Syntax: void orderset payload (Object payload)

Syntax: Object order. payload ()

Software- and Organisations-Service GmbH

March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 64

Instead of this property, the use of order.params_is recommended, which corresponds to
(Variable set) order. payload.

In addition to order. id_which identifies an order, this field can be used for other information.

See Order. params_and Order. xml payload..

Parameters:
payload May be a string or a variable set_.

Returned value:
Object

May be a string or a variable set_.

2.11.9 payload_is_type
Checks the payload COM-Type
Syntax: boolean order. payload is_type (String type name)

Parameters:

type_name "Spooler. Variable set","Hostware.Dyn obj" Of"Hostware. Record".

2.11.10 priority

Orders with a higher priority are processed first
Syntax: void orderset priority (int)

Syntax: int order. priority ()

2.11.11 remove_from_job_chain

Syntax: void order. remove_from job_chain ()

Note that when an order has just been started by a task, then the order. job chain_property will still return the job
chain from which the order has just been removed, using this call, even when "remove from job chain" has
been carried out. It is only when the execution has been ended that this method returns nu11. (other than when the
order has just been added to a job chain). This ensures that the job_chain property remains stable whilst a task is
being executed.

Software- and Organisations-Service GmbH March 2015

Java API 65

2.11.12 run_time

<run_time> is used to periodically repeat an order

Syntax: Run time_ order. run_time ()

Example: in javascript

order. run_time.xml = "<run time><at at='2006-05-23 11:43:00'/></run_time>";

See <run time>..

The <modify order at="now">_command causes an order which is waiting because of run time to start
immediately.

Returned value:
Run time_

2.11.13 setback

Delays an order back for a period of time
Syntax: void order. setback ()

An order will be delayed and repeated after the period of time specified in either <delay order after setback>
or Job. delay order after setback_. When the job is repeated, only the spooler process() job function is
repeated. If the order. setback() function is called from spooler process(), then the retrun value from
spooler process() will have no effect. .

An order counts the number of times this method is called in sequence. This count is then used by
delay order after setback>_. It is set to 0, when spooler process()_is completed without
delay order after setback> _being called. All counters are set to 0 when the JobScheduler is started.

INIA

The <modify order at="now"> command causes a blocked order to start immediately.

2.11.14 setback_count
How many times the order is setting back?
Syntax: int order. setback_count ()

see also <delay order after setback>..

2.11.15 state

The order state

Syntax: void orderset state (String)

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 66

Syntax: string order. state ()
When an order is in a job chain, then its state must correspond with one of the states of the job chain.

Whilst an order is being processed by a job the following state, as defined in the job chain (<job chain node
next state="">_) has no effect. Similarly, the return values from spooler process()__and
Monitor impl.spooler process after()_are meaningless. This means that with order. state_the following
state for a job can be set as required.

An order is added to the job order queue which is corresponding to its state. See <job chain node>_. The
execution by this job will be delayed until the job currently carrying out the order has been completed.

2.11.16 state_text

Free text for the order state

Syntax: void orderset state_text (String)
Syntax: string order. state_text ()

This text is shown on the HTML interface.

For non-API jobs the JobScheduler fills this field with the first line from stdout, up to a maximum of 100 characters.

2.11.17 string_next_start_time

The next start time of an order when <run time> is being used
Syntax: string order. string next_start_time ()

Returned value:
String

"yyyy-mm-dd HH: MM: SS. MMM" Of "now" O "never".

2.11.18 suspended

Suspended order

Syntax: void order.set suspended (boolean)
Syntax: boolean order. suspended ()

A suspended order will not be executed.

When an order is being carried out by a task when it is suspended, then the spooler process() _step will be
completed and the order allocated the successor state before being suspended.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 67

This means that an order can be set to an end state, which stops it from being removed. The JobScheduler can
remove such an order only when it is not suspended - i.e. order. suspended=false).

A suspended order with the end state can be allocated a different state corresponding to a job node in the job
chain. This is effected by using order. state_. In this case the order remains suspended.

2.11.19 title

Optionally a title can be allocated to an order that will show up in the HTML interface and in the logs.
Syntax: void orderset title (String)

Syntax: string order. title ()

2.11.20 web_service

The web service to which an order has been allocated

Syntax: Web service_ order. web_service ()

When an order has not been allocated to a web service, then this call returns the scHEDULER-240 _error.

See also Order. web service or null .

Returned value:
Web service_

2.11.21 web_service operation

The web service operation to which an order has been allocated

Syntax: _Web service operation_ order. web_service_operation ()

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm?help_URL=scheduler.messages.htm#message_SCHEDULER-240

Java API 68

Example:

public boolean spooler process() throws Exception

{
Order order = spooler task. order() :;
Web service operation web service operation = order. web service operation();
Web service request request = web service operation. request();

// Decode request data
String request string = new String(request. binary content(),
request. charset name());

process request string ...;

String response string = "This is my response";
String charset name = TUTE=g" e
ByteArrayOutputStream byos = new ByteArrayOutputStream() ;

// Encode response data

Writer writer = new OutputStreamWriter(byos, charset name);
writer. write(response string);

writer. close();

// Respond
Web service response response = web service operation. response();

response. set _content type("text/plain");
response. set charset name(charset name);
response. set binary content(byos. toByteArray()):;
response. send() ;

// Web service operation has finished

return true;

See <web service> , Web service operation and Order. web service operation or null_,

Returned value:
Web service operation_

2.11.22 web_service_operation_or_null

The web service operation to which an order has been allocated, or nul1l

Syntax: Web service operation_ Order. web_service_operation_or_null ()

See Order. web service operation_, Web service operation_and <web service>_.

Returned value:
Web service operation_

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 69

2.11.23 web_service_or_null
The web service to which an order has been allocated, or null.
Syntax: Web service_ order. web_service_or_ null ()

See also Order. web service._.

Returned value:
Web service_

2.11.24 xml

Order in XML: <order>...</order>
Syntax: string order. xml ()

Returned value:
String

See <order>

2.11.25 xml_payload

XML payload - an order parameter.

Syntax: void orderset xml_payload (String xml)

Syntax: string order. xml_payload ()

This property can include an XML document (in addition to the order. params_property).

<xml payload>_contains the XML document root element (instead of it being in #Pcpara coded form).

2.12 Order_queue - The order queue for an order controlled job

An order controlled job (<job order="yes">_has an order queue, which is filled by the orders to be processed by
a job. The orders are sorted according to their priority and the time at which they enter the queue.

Processing means that the JobScheduler calls the spooler process() _method for a task. This method can access
the order using the Task. order_property. Should the spooler process() end without an error (i.e. without any
exceptions), then the JobScheduler removes the order from the order queue. If the order is in a job chain then it is
moved to the next position in the chain.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API

70

2.12.1 length

The number of orders in the order queue

Syntax: int Q. length ()

2.13 Process_class

See also <process class name="">_.

Example: in javascript

var process classs = spooler. process classs;
var process class = process classs.create process class();
process class.name = "my process class";

process classs. add process class(process class);

2.13.1 max_processes
The maximum number of processes that are executed in parallel
Syntax: void process_class.set max processes (int)

Syntax: int process_class. max_processes ()

Should more tasks have to be started than allowed by this setting, then these tasks starts would be delayed until

processes become freed. The default setting is 10.

See also <process class max processes="">_.

2.13.2 name

The process class name

Syntax: void process_class.set name (String)
Syntax: string process_class. name ()

The name can only be set once and may not be changed.

See also <process class name=""> .

2.13.3 remote_scheduler

The address of the remote JobScheduler, which is to execute a process

Software- and Organisations-Service GmbH

March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 71

Syntax: void process_class.set remote_scheduler (String)

Syntax: String process_class. remote_scheduler ()

Example: in javascript

spooler. process classes. process class("my process class").remote scheduler =
"host: 4444";

See also <process class remote scheduler="">_.

Parameters:

The address is specified in the form: " host:
portnumber".

In addition, the IP address is returned on reading: "
hostname / ipnumber: portnumber”"

Returned value:
String

The address is specified in the form: " host: portnumber”.

In addition, the IP address is returned on reading: " hostname / ipnumber: portnumber"

2.13.4 remove

Removal of the process class

Syntax: void process_class. remove ()

Example: in javascript

spooler. process classs. process class("my process class").remove();

The JobScheduler delays deletion of the process class as long as tasks are still running. No new tasks will be
started before the class is deleted.

See also <process class. remove>_.

2.14 Process_classes

2.14.1 add_process_class

Adds a process class to the JobScheduler

Syntax: void process_classs. add_process_class (Process class pc)

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 72

2.14.2 create_process_class
Creates a new process class
Syntax: Process class_ process_classs. create_process_class ()

Returnds a new Process class_. This class can be made added to the JobScheduler using
Process classes. add process class() _.

Returned value:
Process class_

2.14.3 process_class

Returns a process class

Syntax: Process class_ process_classs. process _class (String process class name)
An exception will occur if the process class is not known.

Returned value:
Process class_

2.14.4 process_class_or_null
Returns a process class
Syntax: Process class_ process_classs. process_class_or_null (String process_class_name)

Returned value:
Process class_

null, when the process class is not known.

2.15 Run_time - Managing Time Slots and Starting Times

See <run time>_, Order_.Schedule_.

Example: in javascript
var order = spooler task.order;

// Repeat order daily at 15:00
order. run_time.xml = "<run time><period single start='15:00'/></run time>";

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 73

2.15.1 schedule

<schedule>

Syntax: Schedule_ run_time. schedule ()

Returned value:
Schedule_

2.15.2 xml

<run_time>

Syntax: void run_time.set xml (String)
Discards the current setting and resets Run_time.

Parameters:
XML document as a string

2.16 Schedule - Runtime

See <schedule> , <run time>_, Spooler. schedule ,Run time .

Example: in javascript

spooler. schedule("my schedule").xml = "<schedule><period single start='15:00"'/><
/schedule>";

2.16.1 xml

<schedule>

Syntax: void schedule.set xml (String)
Syntax: string schedule. xml ()

Deletes the previous setting and resets schedule.

Parameters:
XML document as a string

Returned value:
String

XML document as a string

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 74

2.17 Spooler

There is only one class for this object: spooler .

2.17.1 abort_immediately

Aborts the JobScheduler immediately

Syntax: void spooler. abort_immediately ()
Stops the JobScheduler immediately. Jobs do not have the possibility of reacting.

The JobScheduler kills all tasks and the processes that were started using the Task. create subprocess()
method. The JobScheduler also kills processes for which a process ID has been stored using the Task. add pid()
method.

See <modify spooler cmd="abort immediately">_and JobScheduler Documentation.

2.17.2 abort_immediately_and_restart

Aborts the JobScheduler immediately and then restarts it.

Syntax: void spooler. abort_immediately and_restart ()

Similar to the spooler. abort immediately() method, only that the JobScheduler restarts itself after aborting. It
reuses the command line parameters to do this.

See <modify spooler cmd="abort immediately and restart">_and JobScheduler Documentation.

2.17.3 add_job_chain

Syntax: void spooler. add_job_chain (Job chain chain)

Job chain. orders recoverable_=true causes the JobScheduler to load the orders for a job chain from the
database.

See spooler. create job chain() _.and <job chain>_.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API

75

2.17 .4 configuration_directory

Path of the Configuration Directory with hot folders

Syntax: String spooler. configuration_directory ()

<config configuration directory="..">

2.17.5 create_job_chain

Syntax: Job chain_ spooler. create_job_chain ()

Returns a new Job chain_object. This job chain can be added to the JobScheduler using

Spooler. add job chain() after it has been filled with jobs.

See <job chain>_.

Returned value:
Job chain_

2.17.6 create_order

Syntax: oOrder_ spooler. create_order ()

Creates a new order. This order can be assigned to a job chain using the Job chain. add order() method.

Returned value:
Order_

2.17.7 create_variable_set

Syntax: variable set_ Spooler. create_variable set ()

Returned value:
Variable set_

2.17.8 create_xslt_stylesheet

Syntax: Xslt stylesheet_ spooler. create_xslt_stylesheet ()

Syntax: Xslt stylesheet_ spooler. create_xslt_stylesheet (java.io.path path)

Syntax: Xslt stylesheet_ spooler. create_xslt_stylesheet (String path)

Software- and Organisations-Service GmbH

March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 76

Parameters:

xml Creates an XSLT style sheet as an XML string.

Returned value:
Xslt stylesheet Xslt stylesheet Xslt stylesheet_

2.17.9 db_history_table_name

The name of the database table used for the job history

Syntax: String spooler. db_history_table_name ()

See also Spooler.db history table name()

The factory. ini _(section[spooler], entry db history table=..) setting is overwritten by this parameter.

2.17.10 db_name

The database path

Syntax: string spooler. db _name ()

The database connection string for the history. Should no value be specified here, then the files will be saved in
.csv format. See factory. ini (section| spooler], entry history file=..).

A simple file name ending in . mdb (e.g. scheduler. mdb) can also be specified here when the JobScheduler is
running on Windows. The JobScheduler then uses a Microsoft MS Access database of this name, which is located
in the protocol directory (see the option -10g-dir_). Should such a database not exist, then the JobScheduler will
create this database.

The JobScheduler automatically creates the tables necessary for this database.

The factory. ini (section[spooler], entry db=..) setting is overwritten by this parameter.

2.17.11 db_order_history_table_name

The name of the order history database table

Syntax: String spooler. db_order_history_table_name ()

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 77

See also Spooler.db order history table name()

The factory. ini _(section[spooler] , entry db order history table=..) setting is overwritten by this parameter.

2.17.12 db_orders_table _name

The name of the database table used for orders

Syntax: String spooler. db_orders_table_name ()

See also Spooler.db orders table name()

The factory. ini _(section[spooler], entry db orders table=..) setting is overwritten by this parameter.

2.17.13 db_tasks_table name

The name of the task database table

Syntax: string spooler. db_tasks_table name ()

See also Spooler. db tasks table name()

The factory. ini (section[spooler], entry db tasks table=..) setting is overwritten by this parameter.

2.17.14 db_variables_table_name

The name of the database table used by the JobScheduler for internal variables

Syntax: string spooler. db_variables_table _name ()

The JobScheduler records internal counters, for example, the ID of the next free task, in this database table.

See also Spooler.db variables table name()

The factory. ini (section[spooler], entry db variables table=..) setting is overwritten by this parameter.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 78

2.17.15 directory

The working directory of the JobScheduler on starting

Syntax: string spooler. directory ()

Changes the Working Directory.

A task executed on a remote JobScheduler (<process class remote scheduler="">) returns the value for the
remote Scheduler.

The -cd_option has precedence over this parameter.

A task executed on a remote JobScheduler (<process class remote scheduler="">) returns the value for the
remote Scheduler.

Returned value:
String

The directory ends on Unix with "/" and on Windows with "\ ".

2.17.16 execute_xml

Carries out XML commands

Syntax: String spooler. execute xml (String xml)

Example: in javascript

spooler log. info(spooler. execute xml("<show_state/>"))

Errors are returned as XML <ERROR> replies.

Parameters:
xml See JobScheduler Documentation.

Returned value:
String

Returns the answer to a command in XML format.

2.17.17 hostname

The name of the computer on which the JobScheduler is running.

Syntax: string spooler. hostname ()

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 79

2.17.18 id

The value of the command line -id= setting

Syntax: string spooler. id ()

The JobScheduler only selects elements in the XML configuration whose spooler id attributes are either empty or
set to the value given here.

When the JobScheduler ID is not specified here, then the JobScheduler ignores the spooler id= XML attribute
and selects all the elements in the XML configuration.

See, for example, <config>_.
The -id_option has precedence over this parameter.

The factory. ini (section[spooler], entry id=..) setting is overwritten by this parameter.

2.17.19 include_path

Returns the command line setting -include-path=.

Syntax: string spooler. include_path ()

The directory of the files which are to be included by the <include>_element.

A task executed on a remote JobScheduler (<process class remote scheduler="">_) returns the value for the
remote Scheduler.

Environment variables (e.g. su0ME) are replaced by this attribute (see Settings which Allow Environment Variables
to be Called).

The -include-path_option has precedence over this parameter.

The factory. ini _(section[spooler], entry include path=..) setting is overwritten by this parameter.

<config include path="..">

A task executed on a remote JobScheduler (<process class remote scheduler="">) returns the value for the
remote Scheduler.

2.17.20 ini_path

The value of the -ini= option (the name of the factory. ini file)

Syntax: string spooler. ini_path ()

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 80

A task executed on a remote JobScheduler (<process class remote scheduler="">_) returns the value for the
remote Scheduler.

See -ini_, JobScheduler Documentation

2.17.21 is_service

Syntax: boolean spooler. is_service ()

Returned value:
boolean

is true, when the JobScheduler is running as a service (on Windows) or as a daemon (on Unix).

2.17.22 job

Returns a job
Syntax: Job_ spooler. job (String job _name)
An exception is returned should the job name not be known.

Returned value:
Job_

2.17.23 job_chain

Returns a job chain

Syntax: Job_chain_ spooler. job_chain (String name)

Should the name of the job chain not be known, then the JobScheduler returns an exception.

Returned value:
Job chain_

2.17.24 job_chain_exists

Syntax: boolean spooler. job_chain_exists (String name)

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 81

2.17.25 let_run_terminate_and_restart

Syntax: void spooler. let_run_terminate_and_restart ()

The JobScheduler ends all tasks (by calling the Job _impl_method) as soon as all orders have been completed and
then stops itself. It will then be restarted under the same command line parameters.

See <modify spooler cmd="let run terminate and restart">_and JobScheduler Documentation.

2.17.26 locks

Returns the locks
Syntax: Locks_ spooler. locks ()

Returned value:
Locks_

2.17.27 log

The main log
Syntax: Log_ spooler. log ()
spooler log() is usually used for this property.

Returned value:
Log_

2.17.28 log_dir

Protocol directory

Syntax: string spooler. log _dir ()

The directory in which the JobScheduler writes log files.
log dir=*stderr allows the JobScheduler to write log files to the standard output (stderr, normally the screen) .

A task executed on a remote JobScheduler (<process class remote scheduler="">_) returns the value for the
remote Scheduler.

The -10g-dir_option has precedence over this parameter.

The factory. ini _(section[spooler], entry 1og dir=.) setting is overwritten by this parameter.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 82

A task executed on a remote JobScheduler (<process class remote scheduler="">_) returns the value for the
remote Scheduler.

2.17.29 param

The command line option -param=

Syntax: string spooler. param ()

Free text. This parameter can be read using spooler. param.
The -param_option has precedence over this parameter.

The factory. ini (section [spooler], entry param=..) setting is overwritten by this parameter.

2.17.30 process_classes

Returns the process classes

Syntax: _Process classes_ Spooler. process_classes ()

Returned value:
Process classes_

2.17.31 schedule

Returns the schedule_with the name specified or nul1
Syntax: Schedule_ spooler. schedule (String path)

Returned value:
Schedule_

2.17.32 supervisor_client

Returns the Supervisor_client or nul1

Syntax: Supervisor client_ Spooler. supervisor_client ()

Returned value:
Supervisor client_

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 83

2.17.33 tcp_port

Port for HTTP and TCP commands for the JobScheduler

Syntax: int spooler. tcp_port ()

The JobScheduler can accept commands via a TCP port whilst it is running. The number of this port is set here -
depending on the operating system - with a number between 2048 and 65535. The default value is 4444.

The JobScheduler operates a HTTP/HTML server on the same port, enabling it to be reached using a web browser
- e.g. via http://localhost:4444.

The JobScheduler does not respond to the tcp port=0 default setting either with TCP or HTTP protocols. This
setting can therefore be used to block a JobScheduler from being accessed - for example via TCP.

The -tcp-port_option has precedence over this parameter.

<config tcp port=".">

Returned value:
int

0, when no port is open.

2.17.34 terminate

The proper ending of the JobScheduler and all related tasks

Syntax: void spooler. terminate (int timeout (optional) , boolean restart (optional)
boolean all schedulers (optional) , boolean continue exclusive operation (optional))

I4

Ends all tasks (by calling the spooler close()) method and terminates the JobScheduler.

Should a time limit be specified, then the JobScheduler ends all processes still running after this limit has expired.
(Typical processes are tasks which have remained too long in a method call such as spooler process() _.)

See <modify spooler cmd="terminate"> and JobScheduler Documentation.

Parameters:

timeout The time in seconds which the JobScheduler allows for a task to end. After this time the
JobScheduler stops all processes before stopping itself. If this parameter is not set then the
JobScheduler will wait on tasks indefinitely.

restart restart=true allows the JobScheduler to restart after ending.

all_schedu all schedulers=true ends all the JobSchedulers belonging to a cluster (see -exclusive_). This
lers may take a minute.

continue_e continue exclusive operation=true causes another JobScheduler in the Cluster to take

xclusive o pecome active (see -exclusive).
peration

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 84

2.17.35 terminate_and_restart
Correctly terminates the JobScheduler and all tasks before restarting
Syntax: void spooler. terminate_and_restart (int timeout (optional))

Similar to the spooler. terminate() method, but the JobScheduler restarts itself.

See <modify spooler cmd="terminate and restart"> and JobScheduler Documentation.

Parameters:

time The time in seconds which the JobScheduler allows for a task to end. After this time the JobScheduler
out stops all processes before stopping itself. If this parameter is not set then the JobScheduler will wait on
tasks indefinitely.

2.17.36 udp_port

Port for UDP commands for the JobScheduler

Syntax: int spooler. udp_port ()

The JobScheduler can also accept UDP commands addressed to the port specified in this setting. Note that a UDP
command must fit in a message and that the JobScheduler does not answer UDP commands.

The default value of udp port=0 does not allow the JobScheduler to open a UDP port.
The -udp-port_option has precedence over this parameter.

<config udp port="..">

Returned value:
int

0, when no port is open.

2.17.37 var

Allows access to variables defined in the JobScheduler start script
Syntax: void Sp00|er.set_var (String name, String)
Syntax: string spooler. var (String name)

The variables are used by all JobScheduler job implementations.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 85

2.17.38 variables

The JobScheduler variables as a variable set
Syntax: variable set_ spooler. variables ()
The variables can be set in the configuration file using <config> .

Returned value:
Variable set_

2.18 Spooler_program - Debugging Jobs in Java

Starts the JobScheduler using Java, so that jobs written in Java can be debugged (e.g. using Eclipse). See
Javadoc for information about the methods.

The JobScheduler is started as a Windows application and not as a console program. Output to stderr is lost -
standard output is shown in Eclipse. -10g-dir_shows no output.

See JobScheduler Documentation.

Example:

C:\>java -Djava. library. path=.. -classpath ..\sos. spooler. jar sos.spooler. Spooler program
configuration. scheduler -log-dir=c: \tmp\scheduler

Should the location of the scheduler. dll not be specified in $PATH% then it may be set using

-Djava. library. path=...

2.19 Subprocess

A subprocess is a process which can be started using either Task. create subprocess() Or Subprocess. start()

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API

86

Example: system() - the Simple Execution of a Command, in javascript
exit code = my system("backup /");

function system(cmd, timeout)

{

var subprocess = spooler task.create subprocess();

try
{
if(timeout) subprocess. timeout = timeout;
subprocess. start(cmd);
subprocess. wait for termination();
return subprocess. exit code;
}
finally
{

subprocess. close() ;

Example: in javascript

var subprocess = spooler task.create subprocess();
subprocess. environment("testl") = "one";
subprocess. environment("test2") = "two";
subprocess. ignore error = true;

subprocess. start("sleep 20");

spooler log.info("pid=" + subprocess.pid);
subprocess. timeout = 10;

spooler log.info("wait for termination ...");
var ok = subprocess.wait for termination(10);
spooler log.info("wait for termination ok=" + ok);

if(subprocess. terminated)

{

spooler log.info("exit code=" + subprocess.exit code);

spooler log.info("termination signal=" + subprocess. termination signal);

2.19.1 close

Frees system resources

Syntax: void subprocess. close ()

This method should only be called in language with a garbage collector (Java, JavaScript). In all other cases the

task ends immediately.

Should this method have been called in a language with a garbage collector, then the subprocess is no longer

usable.

Software- and Organisations-Service GmbH

March 2015

Java API 87

2.19.2 env

Environment Variables as Variable_sets

Syntax: variable set_ subprocess. env ()

Example: in javascript

var subprocess = spooler task.create subprocess();
subprocess. start(subprocess. env. substitute("${MY HOME}/my program"));
subprocess. wait for termination();

Returns a variable set for the environment variables.

Initially the environment is filled by the environment variables from the calling process. Environment variables can
be removed in that they are set to "". Calling subprocess. start() _hands over environment variables to the
subprocess.

Note that the names of environment variables are case sensitive on UNIX systems.

Changes made to environment variables after the start of a subprocess have no effect. This is also true for
environment variables changed by the process.

This object cannot be handed over to other objects - it is a part of the task process, whereas the majority of other
objects are part of the JobScheduler process.

Returned value:
Variable set_

2.19.3 environment

Environment variables

Syntax: void subprocess.set environment (String name, String value)

Example:

// The following two statements have the same effect
subprocess. set environment("my variable", "my value")
subprocess. env().set value("my variable") = "my value"

Variables set here are handed over to a new subprocess together with any other environment variables belonging
to the process.

Note that the names of environment variables are case sensitive on UNIX systems.

See also subprocess. env._.

2.19.4 exit_code

Syntax: int subprocess. exit_code ()

Software- and Organisations-Service GmbH March 2015

Java API 88

Is only called after subprocess. terminated == true.

2.19.5 ignore_error

Prevents that a job is stopped, should exit code ! = 0.
Syntax: void subprocess.set ignore_error (boolean)
Syntax: boolean subprocess. ignore_error ()

Prevents a job from being stopped, when at the end of a task the subprocess ends with subprocess. exit code!=
0.

Should a task not wait for the end of a subprocess with the subprocess. wait for termination_method, then the
JobScheduler waits at the end of the task for the end of any subprocesses. In this case the job is stopped with an
error when a subprocess ends with Subprocess. exit code!= 0.

This may be avoided using ignore error.

2.19.6 ignore_signal

Prevents a job from being stopped when the task is stopped with a UNIX signal.
Syntax: void subprocess.set ignore_signal (int)

Syntax: int subprocess. ignore_signal ()

This property does not work on Windows systems, as this system does not support signals.

2.19.7 kill

Stops a subprocess
Syntax: void subprocess. kill (int signal (optional))

Parameters:
signal Only on UNIX systems: The ki11() signal. O is interpreted here as 9 (s1GkILL, immediate ending).

2.19.8 own_process_group
Subprocesses as a Process Group
Syntax: void subprocess.set own_process_group (boolean)

Syntax: boolean Subprocess. own_process_group ()

Software- and Organisations-Service GmbH March 2015

Java API 89

Only available for UNIX systems.

The default setting can be made using factory.ini (section| spooler], entry

SprIOCGSS. own process group=...)_.

own _process group allows a subprocess to run in its own process group, by executing the setpgid(0, 0) system
call. When the JobScheduler then stops the subprocess, then it stops the complete process group.

2.19.9 pid

Process identification

Syntax: int subprocess. pid ()

2.19.10 priority
Process Priority
Syntax: void subprocess.set priority (int)

Syntax: int subprocess. priority ()

Example: in javascript

spooler task.priority = +5; // UNIX: reduce the priority a little

UNIX: The highest priority is -20, the lowest 20. The priority of a task can generally only be reduced and not
increased.

The following priority classes are available on Windows systems 4 "idle", 6 "below normal", 8 "normal", 10
"above normal" and 13 "high" (other values are rounded down). See also Task. priority class_.

Note that an error does not occur, should it not be possible to set the priority of a task.
Note also that a process with a higher priority can block a computer.

The priority of a task can be set independently of the operating system with subprocess. priority class_. See
also Task. priority..

2.19.11 priority_class
Priority Class
Syntax: void subprocess.set priority class (String)

Syntax: String subprocess. priority class ()

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 90

Example: in javascript

subprocess. priority class = "below normal";

The following priority classes can be used to set priorities on Windows and UNIX Systems:

Priority Class Windows UNIX
"idle 4 16
"below normal" 6 6
"normal" 8 0
"above normal" 10 -6
"high" 13 -16

Note that when it is not possible to set a priority for a task - for example, because of inappropriate permissions -
then this must not cause an error. On the other hand, an error will occur should it be attempted to allocate a task a
priority class not listed here.

Note also that a higher priority process can block a computer.

See also subprocess. priority_, Task. priority class_and Microsoft® Windows® Scheduling Priorities.

2.19.12 start

Starts the process

Syntax: void subprocess. start (String command line)

Syntax: void subprocess. start (String filename and arguments)

Windows immediately detects whether the program cannot be executed. In this case the method returns an error.

On UNIX systems the subprocess. exit code_property is set to 99. Before this is done, the end of the process
must be waited on with subprocess. wait for termination() ..

Shell operators such as| , ss and > are not interpreted. The /bin/sh Or c: \windows\system32\cmd. exe programs
must be used to do this. (Note that the actual paths will depend on the installation.)

This process is started on UNIX systems using execvp() and with CreateProcess() on Windows systems.

2.19.13 terminated

Syntax: boolean subprocess. terminated ()

Verifies that a process has ended. Should the process in question have ended, then the subprocess. exit code
and subprocess. termination signal_classes may be called.

Software- and Organisations-Service GmbH March 2015

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/createprocess.asp
http://msdn.microsoft.com/library/en-us/dllproc/base/scheduling_priorities.asp

Java API

91

2.19.14 termination_signal

Signal with which a process (only on UNIX systems) ends

Syntax: int subprocess. termination_signal ()

Is only called, after subprocess. terminated == true.

2.19.15 timeout

Time limit for a subprocess

Syntax: void subprocess.set timeout (double seconds)

After the time allowed, the JobScheduler stops the subprocess (UNIX: with STGKILL).

This time limit does not apply to processes running on remote computers with <process class

remote scheduler="">_.

2.19.16 wait_for_termination

Syntax: void subprocess. wait_for_termination ()

Syntax: boolean subprocess. wait_for_ termination (double seconds)

Parameters:

second Waiting time. Should this parameter not be specified, then the call will take place after the subprocess

s has ended.

Returned value:
boolean

true, after a subprocess has ended.

false, should the subprocess continue beyond the waiting time.

2.20 Supervisor_client

This object is returned by Spooler. supervisor client..

Example: in javascript

var supervisor hostname

spooler. supervisor client. hostname;

Software- and Organisations-Service GmbH

March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 92

2.20.1 hostname

The name or IPnumber of the host computer on which the suupervising JobScheduler is running
Syntax: string supervisor_client. hostname ()

See also <config supervisor="">_.

2.20.2 tcp_port

the TCP port of the supervisor
Syntax: int supervisor_client. tcp_port ()

See also <config supervisor="">_.

2.21 Task

A task is an instance of a job which is currently running.
A task can either be waiting in a job queue or being carried out.

A task is implemented using Job_impl .

2.21.1 add_pid

Makes an independent, temporary process known to the JobScheduler
Syntax: void spooler_task. add_pid (int pid)
Syntax: void spooler_task. add_pid (int pid, double timeout seconds)

This call is used to restrict the time allowed for processes that have been launched by a task. The JobScheduler
ends all independent processes still running at the end of a task.

A log entry is made each time the JobScheduler stops a process. This does not affect the state of a task.
The <kill task> method stops all processes for which the add pid() method has been called.

A process group ID can be handed over on Unix systems as a negative pid. ki11 then stops the complete process
group.

This time limit does not apply for processes being run on remote computers with <process class
remote scheduler="">_.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 93

2.21.2 call_me_again_when_locks_available

Repeats spooler_open() or spooler_process() as soon as locks become available
Syntax: void spooler_task. call_me_again_when_locks_available ()

Causes the JobScheduler to repeat a call of spooler open() _Or spooler process() _, after an unsuccessful
Task. try hold lock() Or Task.try hold lock non exclusive() as soon as the locks required are available.
The JobScheduler then repeats the call once it holds the locks, so that the first call (i.e. spooler open()) will be
successful.

After this call, true/false values returned by spooler open() _Or spooler process()_has no effect. The
JobScheduler leaves the state of the Task. order_unchanged.

2.21.3 changed_directories

The directory in which the change which started a task occurred
Syntax: String spooler_task. changed directories ()

See Job. start when directory changed() , Task. trigger files_.

Returned value:
String

Directory names are to be separated using a semicolon.

" should no change have occurred in a directory.

2.21.4 create_subprocess

Starts a monitored subprocess

Syntax: Subprocess_ spooler_task. create_subprocess ()

Syntax: Subprocess_ spooler_task. create_subprocess (String command line)

Syntax: Subprocess_ spooler_task. create_subprocess (String filename and arguments)

Returned value:
Subprocess Subprocess _Subprocess_

2.21.5 delay_spooler_process
Delays the next call of spooler process()
Syntax: void spooler_task.set delay spooler_process (double)

Syntax: void spooler_task.set delay spooler_process (String hhmm ss)

Software- and Organisations-Service GmbH March 2015

Java API 94

Only functions in spooler process() ..

2.21.6 end

Ends a task
Syntax: void spooler_task. end ()

The JobScheduler no longer calls the spooler process() _method. Instead the spooler close() _method is
called.

This method call can be used at the end of a task to trigger sending a task log. See 1Log_.

2.21.7 error
Sets an error and stops the current job
Syntax: void spooler_task.set error (String)

Syntax: Error_ spooler_task. error ()

This method call returns the last error which has occurred with the current task. Should no error have occurred, an
Error_object is returned, with the is _error property setto false.

An error message can also be written in the task log file using Log. error()

Returned value:
String Error_

2.21.8 exit_code

Exit-Code
Syntax: void spooler_task.set exit code (int)

Syntax: int spooler_task. exit_code ()

Example: in javascript

spooler log. error("This call of spooler log.error() sets the exit code to 1");
spooler task.exit code = 0; // Reset the exit code

The initial exit-code value is 0 - this is changed to 1 should an error occur. Note that an error is defined here as
occurring when the JobScheduler writes a line in the task log containing "l ERROR] ":

. calling the Log. error() method;
. setting the Task. error_property;
. the script returns an exception.

Software- and Organisations-Service GmbH March 2015

Java API 95

The job can then set the Task. exit code_property - e.g. in the spooler on error() method.

The exit code resulting from an operating system process executing a task is not relevant here and, in contrast to
jobs with <process> Or <script language="shell">_, is not automatically handed over to this property.

The exit code determines the commands to be subsequently carried out. See <job> <commands on exit code=""
>_for more information.

The exit codes have no influence for API jobs on whether or not a job is stopped (a task error message causes jobs
to be stopped).

2.21.9 history_field

A field in the task history

Syntax: void spooler_task.set history field (String name, String value)

Example: in javascript

spooler task. history field("extra") = 4711;

The database table (see factory. ini _(section [spooler], entry db history table=..)) must have a column with
this name and have been declared in the factory. ini (section] job] , entry history columns=..) file.

2.21.10id

The task identifier
Syntax: int spooler_task. id ()

The unique numerical identifier of every task run by a JobScheduler.

2.21.11 job

The job which a task belongs to
Syntax: Job_ spooler_task. job ()

Returned value:
Job_

2.21.12 order

The current order

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 96
Syntax: oOrder_ spooler_task. order ()
Example:
Order order = spooler task.order();
spooler log.info("order.id=" + order.id() + ", order.title=" + order.title());
Returned value:
Order_
null, should no order exist.
2.21.13 params
The task parameters
Syntax: variable set_ spooler_task. params ()
Example:
String value = spooler task.params().var("parameter3");
Example:
Variable set parameters = spooler task. params();
if(parameters.count() > 0) spooler log.info("Parameters given");
String valuel = parameters. var("parameterl"); // ™", should the variable not exist
String valuel = parameters. var("parameterl"); // ™", wenn die Variable nicht
vorhanden ist
String value2 = parameters. var("parameter2");
A task can have parameters. These parameters can be set using:
. <params>_in the <job>_element in the configuration file;
. Job. start() _and
. <start job>_.
Returned value:
Variable set_
!'= null
2.21.14 priority
Priority of the Current Task
Syntax: void spooler_task.set priority (int)
Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 97

Syntax: int spooler_task. priority ()

Example: in javascript

spooler task.priority = +5; // Unix: reduce the priority a little

Unix: The highest priority is -20, the lowest 20. The priority of a task can generally only be reduced and not
increased.

The following priority classes are available on Windows systems 4 "idle", 6 "below normal", 8 "normal", 10
"above normal" and 13 "high" (other values are rounded down). See also Task. priority class_.

Note that an error does not occur, should it not be possible to set the priority of a task.
Note also that a process with a higher priority can block a computer.

The priority of a task can be set independently of the operating system with Task. priority class_.

2.21.15 priority_class
Priority Class of the Current Class
Syntax: void spooler_task.set priority class (String)

Syntax: string spooler_task. priority class ()

Example: in javascript

spooler task.priority class = "below normal";

The following priority classes can be used to set priorities on Windows and Unix Systems:

Priority Class Windows Unix
"idle" 4 16
"below normal" 6 6
"normal" 8 0
"above normal" 10 -6
"high" 13 -16

Note that an error will occur should it be attempted to allocate a task a priority class not listed here.
Note also that a higher priority process can block a computer.

See also Task. priority_, Subprocess. priority class_and Microsoft® Windows® Scheduling Priorities.

2.21.16 remove_pid

The opposite to add_pid()

Software- and Organisations-Service GmbH March 2015

http://msdn.microsoft.com/library/en-us/dllproc/base/scheduling_priorities.asp

Java API

98

Syntax: void spooler_task. remove pid (int pid)
An error does not occur when the pid has not been added using Task .

See Task. add pid() _.

2.21.17 repeat

Restarts a task after the specified time

Syntax: void spooler_task.set repeat (double)

(This method actually belongs to the Job_class and has nothing to do with the task currently being processed.)

Should there be no task belonging to the current job running after the time specified has expired, then the
JobScheduler starts a new task. Note that the <run time>_element is considered here, and that the <period

repeat="">_attribute may be temporarily ignored.

Job. delay after error_has priority, should a task return an error.

2.21.18 stderr_path

The path to the file in which stderr task output is captured
Syntax: string spooler_task. stderr_path ()
Text in stderr is currently interpreted in the ISO-8859-1 character set.

Returned value:
String

nm should a task not run in a separate <process classes>_Process.

2.21.19 stderr_text

Text written to stderr up to this point by the process that was started by the task.
Syntax: string spooler_task. stderr_text ()
Text in stderr is currently interpreted in the ISO-8859-1 character set.

Returned value:
String

»» should the task not have been started in a separate process <process classes>..

Software- and Organisations-Service GmbH

March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 99

2.21.20 stdout_path

The path of the file in which stdout task output is captured
Syntax: string spooler_task. stdout_path ()
Text in stdout is currently interpreted in the ISO-8859-1 character set.

Returned value:
String

nm should a task not run in a separate <process classes>_Process.

2.21.21 stdout_text

Text written to stdout up to this point by the process that was started by the task.
Syntax: string spooler_task. stdout_text ()
Text in stdout is currently interpreted in the ISO-8859-1 character set.

Returned value:
String

»» should a task not run in a separate <process classes>_process.

2.21.22 trigger_files

File paths in folders monitored with regex
Syntax: string spooler_task. trigger files ()

Returns the file paths from monitored directories (_Job.start when directory changed()_oOr <
start when directory changed>_) at the time a task is started. Only applies to directories for which a regular
expression has been defined (regex).

The paths are taken from the addresses defined in Job.start when directory changed()_oOr <
start when directory changed>_and combined with the file names.

The non-API <process>_and <script language="shell">_jobs make the content of Task. trigger files
available to the SCHEDULER TASK TRIGGER FILES environment variable.

See Job. start when directory changed() _and Task. changed directories() _.

Returned value:
String

The file paths are separated by semicolons.

v otherwise

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 100

2.21.23 try_hold_lock

Try to hold a lock

Syntax: boolean spooler_task. try_hold lock (String lock path)

Example: in javascript

function spooler process()

{

var result = false;
if(spooler task.try hold lock("Georgien") &&
spooler task. try hold lock non exlusive("Venezuela"))

{
// Task i1s holding the two locks. Insert processing code here.
result = ...

}

else

{

spooler task.call me again when locks available();

}

return result;

try lock hold() attempts to retain the lock specified (_Lock_), and can be called in:

. spooler open() _: the lock is held for the task being carried out and will be freed after the task has been
completed,

. spooler process() _: the lock is only held for the job step currently being carried out and will be given up
after the step has been completed - i.e. after leaving spooler process() .

When the lock is not available and calling this method returns false then the JobScheduler can be instructed to
either:

. repeat the spooler open() _Or spooler process()_calls as soon as the locks are available using
Task.call me again when locks available() _Or

. end spooler open() OF spooler process() With false, without use of the above-mentioned call, (but with
the expected effect),

. throw a SCHEDULER-469 _warning. This applies for t rue, which is interpreted as an error.

See also <lock. use>_.

Returned value:
boolean

true, when the task retains the lock.

2.21.24 try_hold_lock_non_exclusive
Tries to acquire a non-exclusive lock
Syntax: boolean spooler_task. try _hold lock non_exclusive (String lock path)

The same prerequisites apply as to Task. try hold lock() ..

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm?help_URL=scheduler.messages.htm#message_SCHEDULER-469

Java API 101

See <lock. use exclusive="no">_.

Returned value:
boolean

true, if the task successfully acquired the lock.

2.21.25 web_service

The Web Service which a task has been allocated to.
Syntax: Web service_ spooler_task. web_service ()
This property causes an exception when a task has not been allocated to a Web Service.

See also Task. web service or null_.

Returned value:
Web service_

2.21.26 web_service_or_null
The Web Service to which a task has been allocated, or nul1.
Syntax: Web service_ spooler_task. web_service or null ()

See also Task. web service_.

Returned value:
Web service_

2.22 Variable_set - A Variable_set may be used to pass parameters

Variable_set is used for the JobScheduler variables and task parameters. A new Variable_set is created using
Spooler. create variable set() ..

Variable names are case independent.

The value of a variable is known as a variant in the COM interface (JavaScript, VBScript, Perl). Because variables
are usually written in the JobScheduler database, only variant types which can be converted into strings should be
used here.

The value of a variable in Java is a string. Therefore, a string value is returned when reading this variable, when it
is set as a variant in the COM interface. Null and Empty are returned as null. An error is caused should the value
of a variant not be convertible.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API

102

2.22.1 count

The number of variables

Syntax: int variable_set. count ()

2.22.2 merge

Merges with values from another Variable_set
Syntax: void variable_set. merge (variable set vs)

Variables with the same name are overwritten.

2.22.3 names

The separation of variable names by semicolons

Syntax: string variable_set. names ()

"variable 1;variable 2"

java. util. StringTokenizer t = new java. util. StringTokenizer(
)
while(t.hasMoreTokens())
{
String name = t.nextToken();
spooler log.info(name + "=" + variable set.var(name)

Example:

Variable set variable set = spooler.create variable set();
spooler log.info("\"" + variable set.names() + "\""); //
variable set.set var("variable 1", "edno");

variable set.set var("variable 2", "dwa");

spooler log.info("\"" + variable set.names() + "\""); //

variable set.

)

==> "n

names(), ";"

Returned value:
String

All variable names should be separated by semicolons.

2.22.4 substitute

Replaces $-Variables in a String

Syntax: string variable_set. substitute (String sustitution string)

Software- and Organisations-Service GmbH

March 2015

Java API

103

Example: in javascript

subprocess. start(subprocess. env. substitute("${MY HOME}/my program")

)i

In the example below, the subprocess. env_method is used.

References in the string in the form $ name and ${ name} are replaced by variables.

Returned value:
String

The string containing the substituted $ variables.

2.22.5 value

A variable
Syntax: void variable_set.set value (String name, String value)
Syntax: string variable _set. value (String name)

Parameters:

name

value empty, should a variable not exist.

Returned value:
String

empty, should a variable not exist.

2.22.6 var

A variable
Syntax: void variable_set.set var (String name, String value)
Syntax: string variable_set. var (String name)

Use the variable set. value_, which is available in all languages.

Parameters:

name

value empty, should a variable not exist.

Returned value:
String

empty, should a variable not exist.

Software- and Organisations-Service GmbH

March 2015

Java API

104

2.22.7 xml
Variable set as an XML document
Syntax: void variable_set.set xml (String)

Syntax: string variable set. xml ()

Example: in javascript

var variable set = spooler.create variable set();
spooler log.info(variable set.xml); // Liefert <?xml version='1l.0'?><
sos. spooler. variable set/>

variable set.xml= "<?xml version='1.0'?>" +
"<params>" +
"<param name='surname' value='Meier'/>" +
"<param name='christian name' value='Hans'/>" +
"</params>";
spooler log.info(variable set.xml);
spooler log. info("nachname=" + variable set.value("surname"));
spooler log.info("vorname =" + variable set.value("christian name"));

See <sos. spooler. variable set>_, <params>_.

Parameters:

XML document as a string. Returns <
sos. spooler. variable set> . When setting this

property to an XML value, then the name of the root

element is ignored; <params>_or <
sos. spooler. variable set> may be returned.

Returned value:
String

XML document as a string. Returns <sos. spooler. variable set>_. When setting this property to an XML value,

then the name of the root element is ignored; <params>_0r <sos. spooler. variable set>_may be returned.

2.23 Web_service

See also <web service>

2.23.1 forward_xslt_stylesheet_path

Path to the forwarding XSLT stylesheets

Syntax: string web_service. forward xslt_stylesheet path ()

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 105

See also <web service forward xslt stylesheet="">

2.23.2 name

The Name of the JobScheduler Web Service
Syntax: string web_service. name ()

See also <web service name="">

2.23.3 params

Freely definable parameters
Syntax: variable set_ web_service. params ()
The Web Services parameters can be set using the <web service>_element.

Returned value:
Variable set_

2.24 \Web_service _operation

See also <web service>

2.24.1 peer_hostname

Peer (Remote) Host Name

Syntax: string web_service_operation. peer_hostname ()

Returned value:
String

»» should it not be possible to determine the name.

2.24.2 peer_ip

Peer (Remote) IP Address

Syntax: string web_service_operation. peer_ip ()

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Java API 106

2.24.3 request

Requests

Syntax: Web service request_ web_service_operation. request ()

Returned value:
Web service request_

2.24 4 response

Answers

Syntax: Web service response_ Web_service_operation. response ()

Returned value:
Web service response_

2.24.5 web_service

Syntax: Web service_ Web_service_operation. web_service ()

Returned value:
Web service_

2.25 Web_service_request

See Web service operation..

2.25.1 binary_content

Payload as a Byte Array (Java only)
Syntax: byte[] web_service_request. binary content ()
This property is only available under Java.

The ("Content-Type")header field is used to inform the client how binary content is to be interpreted (see
HTTP/1.1 14.17 Content-Type) and web service request.charset name).

Software- and Organisations-Service GmbH March 2015

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17

Java API

107

2.25.2 charset_name

Character Set

Syntax: string web_service_request. charset_name ()

Example: in javascript

spooler log. info(request.content type);
spooler log. info(request.charset name);

spooler log. info(request. header("Content-Type"

//
//
//

var request = spooler task.order. web service operation. request;

==> text/xml;
==> text/=xml
==> utf-8

charset=utf-8

Returns the charset= parameter from the content-Type: header entry.

2.25.3 content_type

Content Type (without parameters)

Syntax: string web_service_request. content_type ()

Returns the content-Type: header entry, without parameters - e.g. "text/plain".

2.25.4 header

Header Entries

Syntax: string web_service request. header (String name)

Example: in javascript

spooler log.info("Content-Type: " +

spooler task. order. web service operation. request. header(

"Content-Type")

)i

Parameters:
name Case is not relevant.

Returned value:
String

Returns " in event of an unrecognized entry.

Software- and Organisations-Service GmbH

March 2015

Java API 108

2.25.5 string_content
Payload as Text
Syntax: string web_service_request. string content ()

The character set to be used is taken from the charset parameter in the headers("Content-Type") (see
HTTP/1.1 14.17 Content-Type). ISO-8859-1 will be used as default, should this parameter not be specified.

The following character sets are recognized:

. ISO-8859-1
. UTF-8 (only on Windows systems and restricted to the ISO-8859-1 characters)

See also Web service request. binary content._.

2.25.6 url

Uniform Resource Locator
Syntax: string web_service_request. url ()

url = "http: //" + header("Host") + url_path

2.26 Web_service _response

Note that the binary content property is only available under Java.

See also <web service>

2.26.1 charset_name

Character set

Syntax: string web_service_response. charset_name ()

Example: in javascript

var request = spooler task.order.web service operation. request;

spooler log.info(request. header("Content-Type")); // ==> text/xml; charset=utf-8
spooler log.info(request.content type); // ==> text/xml

spooler log.info(request.charset name); // ==> utf-8

Reads the charset= parameter from the content-Type: header entry.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17

Java API 109

2.26.2 content_type
Content-Type (without parameters)
Syntax: string web_service_response. content_type ()

Reads the content-Type: header without any of the other associated parameters such as charset=.

2.26.3 header
Header Entries
Syntax: void web_service_response.set header (String value, String name)

Syntax: string web_service response. header (String name)

Example: in javascript

spooler log.info("Content-Type: " +
spooler task. order. web service operation. response. header("Content-Type"));

Parameters:
value "n js used for unknown entries.
name The case in which entries are written is not relevant here.

Returned value:
String

nv is used for unknown entries.

2.26.4 send

Sends a Reply

Syntax: void web_service_response. send ()

2.26.5 status_code

HTTP Status Code
Syntax: void web_service_response.set status_code (int)

The default setting is 200 (OK).

Software- and Organisations-Service GmbH March 2015

Java API

110

2.26.6 string_content

Text payloads

Syntax: void web_service_response.set string content (String text)

var respo
response.
response.
response.
response.

Example: in javascript

nse = spooler task.order.web service operation. response;

content type = "text/plain";

charset name = "iso-8859-1";

string content = "This is the answer";
send() ;

The header("Content-Type") must first of all contain a charset parameter such as:

header("Content-Type") = "text/plain; charset=iso-8859-1";

Text is coded as specified in the charset parameter. ISO-8859-1 will be used as the default value, should this
parameter not be specified.

SeeWeb service request. string content for the character sets which are allowed.

See Web service

response. charset name_.

2.27 Xslt_stylesheet

An XSLT style sheet contains the instructions for the transformation of an XML document.

The XSLT processor is implemented with libxsit .

2.27.1 apply_xml

Applies a style sheet to an XML document.

Syntax: string X. apply_xml (String xml)

2.27.2 close

Frees the style sheet resources

Syntax: void X. close ()

2.27.3 load _file

Loads the style sheet from an XML file

Software- and Organisations-Service GmbH

March 2015

http://xmlsoft.org/XSLT/

Java API

M

Syntax: void X. load_file (java.io.File path)

Syntax: void X. load file (String path)

2.27.4 load_xml

Loads the style sheet from an XML document

Syntax: void X. load_xml (String xml)

Software- and Organisations-Service GmbH

March 2015

Javascript API 12

3 Javascript API

The following classes are available for Javascript:

3.1 Error

3.1.1 code

The error code

Syntax: string error. code

3.1.2 is_error

true, should an error have occurred

Syntax: boolean error. is_error

3.1.3 text

The error text (with error code)

Syntax: string error. text

3.2 Job

A task can either be waiting in the order queue or be running.

3.2.1 clear_delay_after_error

Resets all delays which have previously been set using delay after error

Syntax: spooler_job. clear delay after error ()

3.2.2 clear_when_directory_changed

Resets directory notification for all directories which have previously been set using
start when directory changed()

Software- and Organisations-Service GmbH March 2015

Javascript API 13

Syntax: spooler_job. clear when_directory changed ()

3.2.3 configuration_directory

Directory for the job configuration file should dynamic configuration from hot folders be used
Syntax: string spooler_job. configuration_directory

»» when a job does not come from a configuration directory.

3.2.4 delay_after_error

Delays the restart of a job in case of an error

Syntax: spooler_job. delay after error (int error steps) =doublelint|string seconds or hhmm ss
Example:
spooler job.delay after error(2) = 10; // A 10 second delay after the 2nd
consecutive error
spooler job.delay after error(5) = "00:01"; // One minute delay after the 5th
consecutive error
spooler job. delay after error(10) = "24:00"; // A delay of one day after the
10th consecutive error
spooler job.delay after error(20) = "STOP"; // The Job is stopped after the

20th consecutive error

Should a (first) error occur whilst a job is being run, the JobScheduler will restart the job immediately.
However, after between two and four consecutive errors, the JobScheduler will wait 10 seconds before restarting the
job;

After between five and nine consecutive errors, the job will be restarted after a delay of one minute; After between ten
and nineteen errors, the delay is 24 hours.

The job is stopped after the twentieth consecutive error.

A delay can be specified, should a particular number of errors occur in series. In this case the job will be terminated
and then restarted after the time specified.

This method call can be repeated for differing numbers of errors. A different delay can be specified for each new
method call.

It is possible to set the value of the seconds _or hhmm ss parameter to "sTop" in order to restrict the number of
(unsuccessful) repetitions of a job. The job then is stopped when the number of consecutive errors specified is
reached.

A good position for this call is spooler init() ..

See <delay after error>..

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 14

Parameters:

error_steps The number of consecutive errors required to initiate the delay

seconds_or_hhmm_ss The delay after which the job will be rerun

3.2.5 delay_order_after_setback
Delays after an order is setback

Syntax: spooler_job. delay_ order_after setback (int setback count) = doublelint|string
seconds or hhmm ss

Example:

spooler job. delay order after setback(1) = 60; // for the 1lst and 2nd
consecutive setbacks of an order:

// delay the order 60s.
spooler job. delay order after setback(3) = "01:00"; // After the 3rd consecutive

setback of an order,
// the order will be delayed an hour.

spooler job. max order setbacks = 5; // The 5th setback sets the order
to the error state

A job can delay an order which is currently being carried out with order. setback() _. The order is then positioned
at the rear of the order queue for that job and carried out after the specified time limit.

The number of consecutively occurring setbacks for an order is counted. The delay set after a setback can be
changed using delay order after setback in the event of consecutively occurring setbacks.

See
<delay order after setback>_,

Order. setback() _,

Job. max order setbacks,_,

Job chain. add job() _,

Job. delay after error() ..

Parameters:

setback _cou The number of consecutive errors and therefore setbacks for a job. The setback delay can be
nt varied according to this parameter.

seconds_or_ Time limit for the setback of the order. After expiry of the time limit, the order is reprocessed in the
hhmm_ss same job.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 15

3.2.6 folder_path
The directory in which the job is to be found.
Syntax: string spooler_job. folder_path

»r when the job does come from the local (<config configuration directory="">) configuration file.

Returns the job part relative to the live directory. The path is to start with a slash ("/") and all path components are
to be separated by slashes.

Examples:

. "/somewhere/excel" will be returned for the
c: \scheduler\config\live\somewhere\excel\sample. job. xml job;

. n /" returned for the c: \scheduler\config\live\sample. xml job and

. " (an empty string) returned for a job outside the live directory.

3.2.7 include_path

Value of the -include-path= option
Syntax: string spooler_job. include_path

See -include-path_.

3.2.8 max_order_setbacks

Limits the number of setbacks for an order
Syntax: spooler_job. max_order_setbacks =int

An order state is set to "error" (see Job chain node. error state_) when it is set back more than the number of
times specified here (see order. setback()).

See Job. delay order after setback. and<delay order after setback is maximum="yes">_.

3.2.9 name
The job path beginning without a backslash
Syntax: string spooler_job. name

See <job name="">_.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 16

3.2.10 order_queue

The job order queue

Syntax: Order queue_ spooler_job. order_queue

Example:

spooler log.info('order=' + (spooler job.order queue ? "yes" : "no"));

Every job order (<job order="yes">_) has an order queue. This queue is filled by the job chain to which the job
belongs.

See Job chain. add order() _, and Job chain. add job() _.

Returned value:
Order queue_

null, should the job have no queue (for <job order="no">).

3.2.11 process_class

The process class
Syntax: Process class_ spooler_job. process class

See <job process class="">_.

Returned value:
Process class_

3.2.12 remove

Removes a job
Syntax: spooler_job. remove ()

The job is stopped - i.e. current tasks are terminated and no new ones are started. The job will be removed as soon
as no more tasks are running.

Tasks queuing are ignored.
When no job task is running, the remove() function deletes the job immediately.

Job orders (<job order="yes">_) cannot be removed.

See <modify job cmd="remove">_ .

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 17

3.2.13 start

Creates a new task and places it in the task queue

Syntax: _Task_ spooler_job. start (Variable set variables (optional))

Example:

spooler. job("job a").start();

var parameters = spooler.create variable set();
parameters. value("my parameter") = "my value";
parameters. value("other parameter") = "other value";
spooler. job("job a").start(parameters);

The parameters are available to the Task. params_task. Two parameters are particularly relevant here:

"spooler tas |[gives the task a name which then appears in the status display, e.g. in the web interface.
k name"

"spooler sta |[specifies atime in seconds (real number), after which the task is to start. The JobScheduler <
rt_after” run_time>_is ignored in this case.

See spooler. create variable set() _, Spooler. job_, Variable set. value_.

Returned value:
Task_

3.2.14 start_when_directory_changed

Monitors a directory and starts a task should a natification of a change be received

Syntax: spooler_job. start_when_directory_changed (string directory path, string
filename pattern (optional))

Example:
spooler job.start when directory changed("c:/tmp");

// only relevant for files whose names do not end in "~".
spooler job.start when directory changed("c:/tmp", "~.*["~]1$");

Should there not be a task belonging to this job running and a notification be received that a change in the directory
being monitored has occurred (that a file has been added, changed or deleted), then this change can be used to
prompt the JobScheduler to start a task if the current time falls within that allowed by the <run time> parameter.

This method can be called a more than once in order to allow the monitoring of a number of directories. A repeat
call can also be made to a directory in order to reactivate monitoring - if, for example, it has not been possible to
access the directory.

This method call can be coded in the JobScheduler start script or in the spooler init() _method. In the latter
case, the job must have been started at least once in order for the method call to be carried out. The <run time
once="yes">_setting should be used for this.

The job should be regularly <run time repeat=""> restarted and <delay after error> set.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 118

The same setting can be made in the XML configuration using the <start when directory changed>_element.

Parameters:
directory path the address of the directory being monitored

filename _patte restricts monitoring to files whose names correspond with the regular expression used.
rn

3.2.15 state_text

Free text for the job state

Syntax: spooler_job. state_text =string

Example:

spooler job.state text = "Step C succeeded";

The text will be shown in the HTML interface.

3.2.16 title

The job title

Syntax: string spooler_job. title

Example:

spooler log.info("Job title=" + spooler job. title);

See <job title="">_,

3.2.17 wake

Causes a task to be started

Syntax: spooler_job. wake ()

Starts a task, should the job have the pending or stopped states.

See Job. start()

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 19

3.3 Job_chain - job chains for order processing

A job chain is a series of jobs (job chain nodes). Orders ((order_) proceed along these chains.

Every position in a job chain is assigned a state and a job. When an order is added to the job chain, it is enqueued
by the JobScheduler according to the state of the order. The job assigned to this position then carries out the order.

Additionally, each position in a job chain has a successor state and an error state. The JobScheduler changes the
state of an order after each job in the job chain has been processed. Should the job step return
(spooler process) true,then the JobScheduler sets the succeeding state; otherwise it sets the error state. The
order then moves to another position in the job chain as defined by the new state. However, this does not apply
when the state is changed during execution with order. state_.

A job chain is created using Spooler.create job chain() _; it is filled using Job chain. add job() _and

Job chain. add end state() _and finally made available with Spooler. add job chain()

Every node is allocated a unique state. Therefore either Job chain. add job() Or Job chain. add end state()
must be called once for every state.

Example:

var my job chain = spooler.create job chain();
my job chain.name = "JobChain";

my job chain.add job("job 100", 100, 200, 999)
my job chain.add job("job 200", 200, 1000, 999)
my job chain.add end state(999);

my job chain. add end state(1000);

spooler. add job chain(my job chain);

’
’

3.3.1 add_end_state

Adds the end state to a job chain
Syntax: job_chain. add_end_state (var state)

This state is not assigned a job. An order that reaches the final state has completed the job chain and will be
removed from the chain.

3.3.2 add_job

Adds a job to a job chain

Syntax: job_chain. add_job (string job name, var input state, var output state, var error state
)

3.3.3 add_or _replace_order

Adds an order to a job chain and replaces any existing order having the same identifier

Software- and Organisations-Service GmbH March 2015

Javascript API 120

Syntax: job_chain. add_or_replace_order (Order order)

Should the job chain already contain an order with the same identifier, then this order will be replaced. More
accurately: the original order will be deleted and the new one added to the job chain.

As long as an existing order having the same identifier as the new order is being carried out, both orders will be
present. However, the original order will have already been deleted from the job chain and database; it is only
available to the current task and will completely disappear after it has been completed.

In this case the JobScheduler will wait until the original order has been completed before starting the new one.

See Job chain. add order() _and Order. remove from Jjob chain()

3.3.4 add_order

Adds an order to a job chain

Syntax: Order_ job_chain. add_order (Order | string order or payload)

Should an order already exist on another job chain, then the JobScheduler removes the order from this other chain.
An order is allocated to the job order queue corresponding to its state, and positioned according to its priority.

The job chain must be specified for the JobScheduler using <job chain>_0Or Spooler. add job chain() _.

Should an order with the same order. id_already exist in a job chain, then an exception with the error code
SCHEDULER-186 _is returned. However, see also Job chain. add or replace order() ..

Returned value:
Order_

3.3.5 name
The name of a job chain
Syntax: job_chain. name =string

Syntax: string job_chain. name

Example:

var job chain = spooler.create job chain();
job chain. name = "JobChain";

3.3.6 node

The job chain nodes with a given state

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm?help_URL=scheduler.messages.htm#message_SCHEDULER-186

Javascript API 121

Syntax: Job chain node_ job_chain. node (var state)

Returned value:
Job chain node_

3.3.7 order_count

The number of orders in a job chain

Syntax: int job_chain. order_count

3.3.8 order_queue

= node(state).job().order queue()

Syntax: Order queue_ job_chain. order_queue (var state)
Returns the order queue which has a given state.

Returned value:
Order queue_

3.3.9 orders_recoverable

Syntax: job_chain. orders_recoverable =boolean
Syntax: boolean job_chain. orders_recoverable

See <job chain orders recoverable="">_,

3.3.10 remove
Job chain deletion
Syntax: job_chain. remove ()

Should orders in a job chain still be being processed (in spooler process() _) when the chain is to be deleted,
then the JobScheduler will wait until the last order has been processed before deleting the chain.

Orders remain in the database. Should a new job chain be added which has the same name as a deleted job chain
(spooler. add job chain()), then the JobScheduler will reload any orders from the original job chain which have
remained in the database. Note however, that the states of the orders in the new job chain should be the same as
those in the original chain at the time of its deletion.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 122

3.3.11 title
Syntax: job_chain. title =string
Syntax: string job_chain. title

See <job chain title="">_.

3.4 Job_chain_node

A job chain node is assigned a position in a job chain (_Job chain_). The following elements make up a job chain
node: a state, a job, a successor state and an error state.

A job chain node is created either using Job chain. add job() Or Job chain. add end state()

3.4.1 action
Stopping or missing out job chain nodes
Syntax: node. action =string

Syntax: string node. action

Example:
var job chain node = spooler.job chain("my job chain").node(100);
job chain node. action = "next state";

This option is not possible with distributed job chains.

Possible settings are:

action="process"

This is the default setting. Orders are carried out.

action="stop"
Orders are not carried out, they collect in the order queue.

action="next_state"
Orders are immediately handed over to the next node as specified with next state.

See also <job chain node. modify action="">_.

Character string constonants are defined in Java:

. Job _chain node. ACTION PROCESS
. Job chain node. ACTION STOP
. Job chain node. ACTION NEXT STATE

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 123

3.4.2 error_node

The next node in a job chain in the event of an error

Syntax: Job chain node_ node. error_node

Example:
var job chain node = spooler.job chain("Jobchain").node(100);

spooler log. debug("error state=" + job chain node. error node.state); !/
"state=999"

Returned value:
Job chain node_

null, in the event of no error node being defined (the error state has not been specified)

3.4.3 error_state

State of a job chain in event of an error

Syntax: var node. error_state

Example:
var job chain node = spooler.job chain("Jobchain").node(100);
spooler log.debug("error state=" + job chain node. error node.state); // "error
state=999"
3.4.4 job

The job allocated to a node

Syntax: Job_ node. job

Example:

var job chain node = spooler.job chain("Jobchain").node(100);

spooler log. debug("job=" + job chain node. job. name) ; //
"job=job 100"

Returned value:
Job_

Software- and Organisations-Service GmbH March 2015

Javascript API

124

3.4.5 next_node

Returns the next node or null if the current node is assigned the final state.

Syntax: Job chain node_ node. next_node

Returned value:
Job chain node_

3.4.6 next_state

The order state in a job chain after successful completion of a job

Syntax: var node. next_state

Example:
var job chain node = spooler.job chain("Jobchain").node(100);
spooler log. debug("next state=" + job chain node. next state); //
"state=200"
3.4.7 state
The valid state for a job chain node
Syntax: var node. state
Example:
var job chain node = spooler.job chain("Jobchain").node(100);
spooler log.info("state=" + job chain node.state); //
"state=100"
3.5 Job_impl - Super Class for a Job or the JobScheduler Script
Job methods are called in the following order:
spooler init()
spooler open()
spooler process()
spooler process()
spooler close()
spooler on success() or spooler on error()
Software- and Organisations-Service GmbH March 2015

Javascript API 125

spooler exit()

None of these methods must be implemented. However, it is usual that at least the spooler process() _method is
implemented.

An error during carrying out a job script whilst loading or during spooler init() Causes spooler on error() .to
be called. The job is then stopped and spooler exit() called (although spooler init() has not been called!).
The script is then unloaded.

Note that spooler on error()_must also be able to handle errors which occur during loading or in
spooler init() ..

Note also that spooler exit() _is called even though spooler init() has not been called.

3.5.1 spooler

The JobScheduler base object

Syntax: Spooler_ spooler

Example:

spooler log.debug("The working directory of the JobScheduler is " + spooler.directory
) ;

Returned value:
Spooler_

3.5.2 spooler_close
Task end
Syntax: spooler_close ()

This method is called after a job has been completed. The opposite of this method is spooler open() .

3.5.3 spooler_exit
Destructor
Syntax: spooler_exit ()

Is called as the last method before the script is unloaded. This method can be used, for example, to close a
database connection.

Software- and Organisations-Service GmbH March 2015

Javascript API 126

3.5.4 spooler_init
Initialization
Syntax: boolean spooler_init ()

The JobScheduler calls these methods once before spooler open() _. This is analog to spooler exit() _. This
method is suitable for initializing purposes (e.g. connecting to a database).

Returned value:
boolean

false ends a task. The JobScheduler continues using the spooler exit() _method. When the task is processing
an order, then this return value makes the JobScheduler terminate the job with an error. That is, unless a repeated
start interval has been set using Job. delay after error

3.5.5 spooler_job

The job object

Syntax: Job_ spooler job

Example:

spooler log.info("The name of this job is " + spooler job.name);

Returned value:
Job_

3.5.6 spooler_log

Event logging object

Syntax: Log_ spooler_log

Example: in java

spooler log.info("Something has happened");

Returned value:
Log_

3.5.7 spooler_on_error

Unsuccessful completion of a job

Syntax: spooler_on_error ()

Software- and Organisations-Service GmbH March 2015

Javascript API 127

Is called at the end of a job after an error has occurred (after spooler close() butbefore spooler exit()).

3.5.8 spooler_on_success
Successful completion of a job
Syntax: spooler_on_success ()

This method is called by the JobScheduler after spooler close() and before spooler exit() _; should no error
have occurred.

3.5.9 spooler_open

The Start of a Task
Syntax: boolean spooler_open ()

This method is called immediately after spooler init() _. The opposite of this method is spooler close() ..

3.5.10 spooler_process

Job steps or the processing of an order

Syntax: boolean spooler_process ()

Processes a job step.

An order driven job stores the current order in Task. order .

The default implementation returns false. The implementation of an order driven job can set the successor state for
an order by returning true.

Returned value:
boolean

In the event of standard jobs <job order="no">_: false the JobScheduler ends processing of this job; true> the
JobScheduler continues calling the spooler process() method.

In the event of order driven jobs <job order="yes">_ : false the order acquires the error state (s.
Job chain node_and <job chain node>_). true the order acquires the next state or is terminated if the next state
is the final state. This, however, does not apply when the state is changed during execution using order. state_.

3.5.11 spooler_task

The task object

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API

128

Syntax: Task_ spooler_task

Example:

spooler log.info("The task id is " + spooler task.id);

Returned value:
Task_

3.6 Lock

See also <lock name="">_.

Example:

var locks

spooler. locks;

var lock locks. create lock();
lock. name "my lock";

locks. add lock(lock);

3.6.1 max_non_exclusive

Limitation of non-exclusive allocation
Syntax: lock. max_non_exclusive =int
Syntax: int

lock. max_non_exclusive

The default setting is unlimited (231-1), which means that with <lock. use exclusive

—_n

="Nno

">_any number of

non-exclusive tasks can be started (but only one exclusive task).
The number cannot be smaller than the number of non-exclusive allocations.

See also <lock max non exclusive="">_.

3.6.2 name

The lock name

Syntax: lock. name =string
Syntax: string lock. name

The name can only be set once and cannot be changed.

See also <lock name="">_.

Software- and Organisations-Service GmbH

March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 129

3.6.3 remove

Removes a lock

Syntax: lock. remove ()

Example:

spooler. locks. lock("my lock").remove();

A lock can only be removed when it is not active - that is, it has not been allocated to a task and it is not being used
by ajob (<lock. use>).

See also <lock. remove> .

3.7 Locks

3.7.1 add_lock

Adds a lock to a JobScheduler

Syntax: locks. add_lock (Lock lck)

3.7.2 create_lock
Creates a new lock
Syntax: Lock_ locks. create_lock ()

Returns a new lock Lock_. This lock can be added to the JobScheduler using Locks. add lock() _.

Returned value:
Lock_

3.7.3 lock

Returns a lock
Swﬂax Lock_ locks. lock (string lock name)
An exception will be returned if the lock is unknown.

Returned value:
Lock_

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 130

3.7.4 lock_or_null

Returns a lock

Syntax: Lock_ locks. lock_or_null (string lock name)

Returned value:
Lock_

null, when the lock is unknown.

3.8 Log - Logging

The spooler 1og method can be used in a job or in the JobScheduler start script with the methods described here.
Notification by e-mail

The JobScheduler can send a log file after a task has been completed per e-mail. The following properties define in
which cases this should occur.

. Log. mail on error,,

. Log. mail on warning_,

° Log. mail on process_,

. Log. mail on success_and
. Log. mail it

Only the end of a task - and not the end of an order - (i.e. spooler process() _) can initiate the sending of e-mails.
However, see Task. end() _.

The Log. mail_method makes the Mail_object available, which in turn addresses the mails.

Example:

spooler log.info("Something for the Log");

spooler log.mail on warning = true;

spooler log.mail. from = "scheduler@company. com";
spooler log.mail. to "admin@company. com";
spooler log. mail. subject "ended";

3.8.1 debug

Debug message (level -1)

Syntax: spooler log. debug (string line)

Software- and Organisations-Service GmbH March 2015

Javascript API 131

3.8.2 debug1

Debug message (level -1)

Syntax: spooler_log. debugl (string line)

3.8.3 debug?

Debug message (level -2)

Syntax: spooler log. debug2 (string line)

3.8.4 debug3

Debug message (level -3)

Syntax: spooler_log. debug3 (string line)

3.8.5 debug4

Debug message (level -4)

Syntax: spooler_log. debugd4 (string line)

3.8.6 debugb

Debug message (level -5)

Syntax: spooler log. debug5 (string line)

3.8.7 debugb

Debug message (level -6)

Syntax: spooler_log. debugé (string line)

3.8.8 debug?

Debug message (level -7)

Software- and Organisations-Service GmbH March 2015

Javascript API 132

Syntax: spooler_log. debug7 (string line)

3.8.9 debug8

Debug message (level -8)

Syntax: spooler log. debug8 (string line)

3.8.10 debug9

Debug message (level -9)

Syntax: spooler_log. debug9 (string line)

3.8.11 error

Error Message (Level 1)
Syntax: spooler_log. error (string line)

A job stops after a task has ended, should an error message have been written in the task log (spooler 1og_)and
<job stop on error="no">_not have been set.

3.8.12 filename

Log file name

Syntax: string spooler_log. filename

3.8.13 info

Information message (Level 0)

Syntax: spooler_log. info (string line)

3.8.14 last

The last output with the level specified

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API

133

Syntax: string spooler_log. last (int| string level)

3.8.15 last_error_line

The last output line with level 2 (error)

Syntax: string spooler_|log. last_error_line

3.8.16 level
Limit protocol level
Syntax: spooler_log. level =int

Syntax: int spooler_log. level

Defines the level with which protocol entries should be written. Every protocol entry is given one of the following
categories: error, warn, info, debugl t0o debug9 (debugl is the same as debug).

Only messages above the level specified will be given out.

The meanings of the numerical values are:

-9to-2: debug9 to debug?2
-1: debug

0: info

1: warn

2: error

The -10g-1evel option has precedence over this parameter.

The factory. ini _(section[job] , entry 1og level=..) setting is overwritten by this parameter.

The factory. ini _(section[spooler], entry 1og level=..) setting is overwritten by this parameter.

Only messages above the level specified will be given out.

The meanings of the numerical values are:

-9to -2: debug9 t0 debug2
-1: debug

0: info

1: warn

2: error

Software- and Organisations-Service GmbH

March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 134

3.8.17 log

Writes in the log file with the specified level.

Syntax: spooler log. log (int level, string line)

3.8.18 log_file

Adds the content of a file to the log file
Syntax: spooler_log. log_file (string path)
Log the content of a file with level O (info). An error occurring whilst accessing the file is logged as a warning.

Note that when executed on a remote computer with <process class remote scheduler="">_the file is read
from the JobScheduler's file system and not that of the task.

3.8.19 mail
E-mail settings are made in the Mai1 Object
Syntax: spooler log. mail =Mail

Syntax: Mail_ spooler log. mail

Returned value:
Mail_

3.8.20 mail_it

Force dispatch

Syntax: spooler_log. mail it =boolean

If this property is set to true, then a log will be sent after a task has ended, independently of the following settings:

Log. mail on error_, Log.mail on warning_, Log.mail on success_, Log.mail on process_ and

Log. mail on error_.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 135

3.8.21 mail_on_error

Sends an e-mail should a job error occur. Errors are caused by the Log. error() method or by any exceptions that
have not been caught by a job.

Syntax: spooler_log. mail_on_error =Dboolean

Syntax: boolean spooler_log. mail on_error

Content of the e-mail is the error message. The log file is sent as an attachment.

The factory. ini _(section[job],entrymail on error=.) setting is overwritten by this parameter.

The factory. ini _(section[spooler], entrymail on error=..) setting is overwritten by this parameter.

Content of the e-mail is the error message. The log file is sent as an attachment.

3.8.22 mail_on_process

Sends an e-mail should a job have successfully processed the number of steps specified. Steps are caused by the
spooler process() _methods:

Syntax: spooler_log. mail_on_process =int

Syntax: int spooler_log. mail_on_process

Causes the task log to be sent when a task has completed at least the specified number of steps - i.e. calls of
spooler process() _. Because non-API tasks do not have steps, the JobScheduler counts each task as a single
step.

Content of the e-mail is the success message. The log file is sent as an attachment.

The factory. ini _(section[job] , entry mail on process=.) setting is overwritten by this parameter.

The factory. ini _(section[spooler], entrymail on process=.) setting is overwritten by this parameter.

Content of the e-mail is the success message. The log file is sent as an attachment.

3.8.23 mail_on_success
Sends an e-mail should a job terminate successfully.
Syntax: spooler_log. mail_on_success =boolean

Syntax: boolean spooler_log. mail_on_success

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 136

The success message forms the content of the e-mail. The log file is sent as an attachment.

The factory. ini _(section[job] ,entrymail on success=..) setting is overwritten by this parameter.

The factory. ini (section[spooler],entrymail on success=..) setting is overwritten by this parameter.

The success message forms the content of the e-mail. The log file is sent as an attachment.

3.8.24 mail_on_warning

Sends an e-mail should a job warning occur. Warnings are caused by the Log. warn() _method.
Syntax: spooler_log. mail_on_warning =boolean

Syntax: boolean spooler_log. mail_on_warning

The warning forms the content of the e-mail. The log file is sent as an attachment.

The factory. ini _(section[spooler],entrymail on warning=..) setting is overwritten by this parameter.

The warning forms the content of the e-mail. The log file is sent as an attachment.

3.8.25 new_filename

A new name for the log file

Syntax: spooler_log. new_filename =string
Syntax: string spooler_|log. new_filename

Sets the name of the log file. The JobScheduler copies a log into this file after a log has been made. This file is
then available to other applications.

3.8.26 start_new_file

Only for the main log file: closes the current log file and starts a new one

Syntax: spooler_log. start_new_file ()

3.8.27 warn

Warning (Level 2)

Syntax: spooler_log. warn (string line)

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 137

3.9 Mail - e-mail dispatch

See Log. mail .

3.9.1 add_file
Adds an attachment

Syntax: mail. add_file (string path, string filename for mail (optional) , string content type

(optional) , string encoding (optional))
Example:
spooler log.mail.add file("c:/tmp/l.txt", "1.txt", "text/plain", "quoted-printable");
Parameters:
path path to the file to be appended
filename_for mail The file name to appear in the message
content type "text/plain" is the preset value.
encoding e.g. "quoted printable"

3.9.2 add_header _field

Adds a field to the e-mail header

Syntax: mail. add_header field (string field name, string value)

3.9.3 bcc

Invisible recipient of a copy of a mail, (blind carbon copy)
Syntax: mail. bec =string

Syntax: string mail. bee

Example:

spooler log.mail. bcc = "hans@company. com";

Software- and Organisations-Service GmbH March 2015

Javascript API 138

Multiple addresses (separated by commas) can be specified when the hostware uses JavaMail to send e-mails.

See javax.mail.InternetAddress.parse(String).

The factory. ini _(section[job] , entry 1og mail bcc=..) setting is overwritten by this parameter.

The factory. ini _(section[spooler], entry 1og mail bcc=..) setting is overwritten by this parameter.

Multiple addresses (separated by commas) can be specified when the hostware uses JavaMail to send e-mails.

See javax.mail.InternetAddress.parse(String).

3.9.4 body
Message content
Syntax: mail. body =string

Syntax: string mail. body

Example:

spooler log. mail. body = "Job succeeded";

Line feed / carriage return is coded with \n (chr(10) in VBScript).

3.9.5cc
Recipient of a copy of a mail, (carbon copy)
Syntax: mail. cc =string

Syntax: string mail. cc

Example:

spooler log.mail.cc = "hans@company.com";

Multiple addresses (separated by commas) can be specified when the hostware uses JavaMail to send e-mails.

See javax.mail.InternetAddress.parse(String).

The factory. ini _(section] job] , entry 1og mail cc=..) setting is overwritten by this parameter.

The factory. ini _(section] spooler], entry 1og mail cc=..) setting is overwritten by this parameter.

Multiple addresses (separated by commas) can be specified when the hostware uses JavaMail to send e-mails.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://java.sun.com/products/javamail/javadocs/javax/mail/internet/InternetAddress.html#parse(java.lang.String)
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://java.sun.com/products/javamail/javadocs/javax/mail/internet/InternetAddress.html#parse(java.lang.String)
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://java.sun.com/products/javamail/javadocs/javax/mail/internet/InternetAddress.html#parse(java.lang.String)

Javascript API 139

See javax.mail.InternetAddress.parse(String).

3.9.6 dequeue

Repeated attempts can be made to send messages from the queue dir directory
Syntax: int mail. dequeue ()

See Mail. dequeue log_, factory. ini (section[spooler],entrymail gqueue dir=..).

Returned value:
int

The number of messages sent

3.9.7 dequeue_log

The dequeue() log

Syntax: string mail. dequeue_log

Example:
var count = spooler log.mail.dequeue();
spooler log.info(count + " messages from mail queue sent");

spooler log.info(spooler log.mail.dequeue log);

See Mail. dequeue() _.

3.9.8 from
Sender
Syntax: mail. from =string

Syntax: string mail. £rom

Example:

spooler log.mail. from = "scheduler@company. com";

The factory. ini _(section[job] , entry 1og mail from=..) setting is overwritten by this parameter.

The factory. ini _(section[spooler], entry log mail from=..) setting is overwritten by this parameter.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://java.sun.com/products/javamail/javadocs/javax/mail/internet/InternetAddress.html#parse(java.lang.String)
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 140

3.9.9 queue_dir
The directory used for returned e-mails
Syntax: mail. queue_dir =string path

Syntax: string mail. queue dir

E-mails which cannot be sent (because, for example, the SMTP server cannot be contacted) are stored in this
directory.

In order to send these e-mails later it is necessary to write a job which calls up the Mail. dequeue() method.

This setting is generally made in sos. ini (section[mail], entry gueue dir=..).

Environment variables (e.g. sHOME) are replaced by this attribute (see Settings which Allow Environment Variables
to be Called).

The factory. ini _(section[job] , entry mail gqueue dir=..) setting is overwritten by this parameter.

The factory. ini _(section[spooler], entry mail queue dir=..) setting is overwritten by this parameter.

The sos. ini (section[mail], entry queue dir=..) setting is overwritten by this parameter.

3.9.10 smtp
The name of the SMTP server
Syntax: mail. smtp =string

Syntax: string mail. smtp

Example:

spooler log.mail.smtp = "mail. company. com";

These settings are generally made using sos. ini _(section| mail], entry smtp=...).

smtp=-queue Stops e-mails being sent. Instead mails are written into the file specified in queue dir. See also
sos. ini_(section[mail], entry queue only=..).

The factory. ini _(section[job] , entry smtp=..) setting is overwritten by this parameter.

The factory. ini_(section[spooler] , entry smtp=..) setting is overwritten by this parameter.

The sos. ini (section[mail], entry smtp=..) setting is overwritten by this parameter.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 141

3.9.11 subject
Subject, re
Syntax: mail. subject =string

Syntax: string mail. subject

Example:

spooler log. mail. subject = "Job succeeded";

The factory. ini _(section] job] , entry 1og mail subject=..) setting is overwritten by this parameter.

The factory. ini (section[spooler], entry 1og mail subject=..) setting is overwritten by this parameter.

3.9.12 to
Recipient
Syntax: mail. to =string

Syntax: string mail. to

Example:

spooler log.mail.to = "admin@company.com";

Multiple addresses (separated by commas) can be specified when the hostware uses JavaMail to send e-mails.

See javax.mail.InternetAddress.parse(String).

The factory. ini _(section[job],entry 1og mail to=..) setting is overwritten by this parameter.

The factory. ini _(section[spooler], entry log mail to=..) setting is overwritten by this parameter.
Multiple addresses (separated by commas) can be specified when the hostware uses JavaMail to send e-mails.

See javax.mail.InternetAddress.parse(String).

Software- and Organisations-Service GmbH March 2015

http://java.sun.com/products/javamail/javadocs/javax/mail/internet/InternetAddress.html#parse(java.lang.String)
http://java.sun.com/products/javamail/javadocs/javax/mail/internet/InternetAddress.html#parse(java.lang.String)
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 142

3.9.13 xslt_stylesheet

The XSLT style sheet for e-mail processing. Before sending an e-mail the JobScheduler creates an XML document
containing the e-mail headers, subject and body. The content of these elements can be adjusted or overwritten by
an individual XSLT style sheet. This can be used e.g. to create translations of e-mail content. Having processed the
XSLT style sheet the JobScheduler sends the resulting content of the XML elements as e-mail.

Syntax: xslt stylesheet_ Mmail. xslt_stylesheet

Returned value:
Xslt stylesheet_

The XSLT style sheet as a string

3.9.14 xslt_stylesheet_path

The path and file name of the XSL style sheet for e-mail processing.

Syntax: mail. xslt_stylesheet path =string path

Example:

spooler log.mail. xslt stylesheet path = "c:/stylesheets/mail. xslt";

The path to the XSLT style sheet. XSLT style sheets are used by the JobScheduler for the preparation of e-mails.
At the time of writing (April 2006) this subject is not documented.

<config mail xslt stylesheet="..">
Parameters:
path The path of the file containing the XSLT style sheet

3.10 Monitor_impl - Using Super Classes for Start Scripts or Jobs

A job can be given a monitor using <monitor>_.

A monitor can provide the following methods:

Monitor impl. spooler task before()
Before starting a task - can prevent a task from being started.

Monitor impl. spooler task after()
After a task has been completed.

Monitor impl. spooler process before()
Before spooler process() -this method can stop spooler process() from being called.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 143

Monitor impl. spooler process after()

After spooler process() - can be used to change its return value.

3.10.1 spooler

The JobScheduler Object

Syntax: Spooler_ spooler

Example:

spooler log. debug("The working directory of the JobScheduler is " + spooler.directory

)

Is the same object as spooler_in the Job impl class.

Returned value:
Spooler_

3.10.2 spooler_job

The Job Object

Syntax: _Job_ spooler_job

Example:

spooler log.info("The name of this job is " + spooler job.name);

Is the same object as spooler job_ inthe Job impl class.

Returned value:
Job_

3.10.3 spooler_log
Writing Log Files

Syntax: Log_ spooler_log

Example: in java

spooler log.info("Something has happened");

Is the same object as spooler log.inthe Job impl class.

Returned value:
Log_

Software- and Organisations-Service GmbH March 2015

Javascript API

144

3.10.4 spooler_process_after

After spooler process()

Syntax: boolean spooler process_after (boolean spooler process result)

Example: in java

{

spooler process result);

}

public boolean spooler task after(boolean spooler process result)

spooler log.info("SPOOLER TASK BEFORE()");

spooler log. info("spooler process() didn't throw an exception and delivered " +

return spooler process result; // Unchanged result

throws Exception

The JobScheduler calls this method after spooler process() _has been carried out.

Parameters:

spooler_process The return value from the spooler process() is setto false, should spooler process()

_result have ended with an exception.

Returned value:
boolean

Replaces the return value from the spooler process() method or false, should spooler process() have ended

with an error.

3.10.5 spooler_process_before

Before spooler process()

Syntax: boolean spooler_process_before ()

Example: in java

public boolean spooler process before()

{

return true; // spooler process()

throws Exception

spooler log. info("SPOOLER PROCESS BEFORE()");

will be executed

Software- and Organisations-Service GmbH

March 2015

Javascript API

145

Example: in java

public boolean spooler process before() throws Exception
{

boolean continue with spooler process = true;

if(!are needed ressources available())

{
spooler task. order().setback();

continue with spooler process false;

return continue with spooler process;

This method is called by the JobScheduler before each call of spooler process() .

Returned value:
boolean

false prevents further calls to spooler process() _. The JobScheduler continues as though false had been

returned by spooler process() false.

3.10.6 spooler_task

The Task Object

Syntax: Task_ spooler_task

Example:

spooler log.info("The task id is " + spooler task.id);

Is the same object as spooler task_in the Job impl class.

Returned value:
Task_

3.10.7 spooler_task_after

After Completing a Task

Syntax: spooler_task_after ()

Example: in java

public void spooler task after() throws Exception

{
spooler log.info("SPOOLER TASK AFTER()");

Software- and Organisations-Service GmbH

March 2015

Javascript API

146

This method is called by the JobScheduler after a task has been completed.

3.10.8 spooler_task before

Before Starting a Task

Syntax: boolean spooler_task_before ()

Example: in java

public boolean spooler task before() throws Exception
{
spooler log. infol("SPOOLER TASK BEFORE()");
return true; // Task will be started
//return false; // Task will not be started

This method is called by the JobScheduler before a task is loaded.

Returned value:
boolean

false does not allow a task to start and Monitor impl.spooler task after() will not be called.

3.11 Order - Order

See JobScheduler Documentation, spooler. create order() _, Job chain. add order() _, Task. order_.

File order

A file order is an order with for which the scheduler file path parameter has been set: order. params_.

Variable set. value()

See JobScheduler Documentation.

Software- and Organisations-Service GmbH

March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 147
Example: An Order with a simple Payload
// Create order:
{
var order = spooler.create order():;
order. id = 1234;
order. title = "This is my order";
order. state text = "This is my state text";
order. payload = "This is my payload";
spooler. job chain("my job chain").add order(order);
}
// Process order:
function spooler process()
{
var order = spooler task.order;
spooler log. info("order. payload=" + order. payload);
return true;
}
Example: Creating an Order with a Variable_set as a Payload
// Create order:
{
var variable set = spooler.create variable set();
variable set.value("param one") = "11111";
variable set.value("param two") = "22222";
var order = spooler.create order();
order. id = 1234;
order. payload = variable set;
spooler. job chain("my job chain").add order(order);
}
// Process order:
function spooler process()
{
var order = spooler task.order;
var variable set = order. payload;
spooler log.info("param one=" + variable set.value("param one"));
spooler log.info("param two=" + variable set.value("param two"));
return true;
}
3.11.1 at
The order start time
Syntax: order. at =string|DATE
Example:
order. at = "now+65";
spooler. job chain("my job chain").add order(order);
Software- and Organisations-Service GmbH March 2015

Javascript API 148

Used to set the start time before an order is added to an order queue. The following can be specified as a string:

3 "now"

. "yyyy-mm-dd HH: MM : SS]"
. "now + HH: MM : SS1"

. "now + seconds"

This setting changes start times set by order. run time_Or Order. setback() _.

See <add order at="">_.

3.11.2 end_state

The state that should be reached when an order has been successfully completed
Syntax: order. end_state =var
Syntax: var order. end_state

When an order has its own end_state other than "" then it is considered to be completed after the job allocated to
this end state has been completed and before the order otherwise leaves this state (see <job chain node>_for
example to continue to another job which usually comprises a part of the job chain).

The state specified has to reference a valid state of a job node in the job chain.

3.11.3id

Order Identification
Syntax: order. id =var
Syntax: var order. id

Every order has an identifier. This identifier must be unique within a job chain or job order queue. It should also
correspond to the data being processed. Normally database record keys are used.

When an id is not set, then the JobScheduler automatically allocates one using Job chain. add order() _.

3.11.4 job_chain

The job chain containing an order
Syntax: Job chain_ order. job _chain

Returned value:
Job chain_

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 149

3.11.5 job_chain_node

The job chain nodes which correspond with the order state

Syntax: Job chain node_ order. job_chain_node

Returned value:
Job chain node_

3.11.6 log

Order log

Syntax: _Log_ order. log

Example:

spooler task. order. log. info("Only for order log, not for task log");
spooler log. info("For both order log and task log");

Returned value:
Log_

3.11.7 params

The order parameters

Syntax: order. params =Vvariable set

Syntax: variable set_ order. params

params is held in order. payload_, the latter cannot, therefore, be used together with params.
See <add order>_.

Returned value:
Variable set_

3.11.8 payload
Load - an order parameter.
Syntax: order. payload =vVariable set_|string|int|.., payload

Syntax: variable set_|stringl|int|.. order. payload

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 150

Instead of this property, the use of order.params_is recommended, which corresponds to
(Variable set) order. payload.

In addition to order. id_which identifies an order, this field can be used for other information.

See Order. params_and Order. xml payload..

Parameters:
payload May be a string or a variable set_.

Returned value:
Variable set_|stringlint]..

May be a string or a variable set_.

3.11.9 payload_is_type
Checks the payload COM-Type
Syntax: boolean order. payload_is_type (string type_ name)

Parameters:

type_name "Spooler. Variable set","Hostware.Dyn obj" Of"Hostware. Record".

3.11.10 priority

Orders with a higher priority are processed first
Syntax: order. priority =int

Syntax: int order. priority

3.11.11 remove_from_job_chain

Syntax: order. remove_from job_chain ()

Note that when an order has just been started by a task, then the order. job chain_property will still return the job
chain from which the order has just been removed, using this call, even when "remove from job chain" has
been carried out. It is only when the execution has been ended that this method returns nu11. (other than when the
order has just been added to a job chain). This ensures that the job_chain property remains stable whilst a task is
being executed.

Software- and Organisations-Service GmbH March 2015

Javascript API 151

3.11.12 run_time

<run_time> is used to periodically repeat an order

Syntax: Run time_ order. run_time

Example:

order. run_time.xml = "<run time><at at='2006-05-23 11:43:00'/></run_time>";

See <run time>..

The <modify order at="now">_command causes an order which is waiting because of run time to start
immediately.

Returned value:
Run time_

3.11.13 setback

Delays an order back for a period of time
Syntax: order. setback ()

An order will be delayed and repeated after the period of time specified in either <delay order after setback>
or Job. delay order after setback_. When the job is repeated, only the spooler process() job function is
repeated. If the order. setback() function is called from spooler process(), then the retrun value from
spooler process() will have no effect. .

An order counts the number of times this method is called in sequence. This count is then used by
delay order after setback>_. It is set to 0, when spooler process()_is completed without
delay order after setback> _being called. All counters are set to 0 when the JobScheduler is started.

INIA

The <modify order at="now"> command causes a blocked order to start immediately.

3.11.14 setback_count
How many times the order is setting back?
Syntax: int order. setback_count

see also <delay order after setback>..

3.11.15 state

The order state

Syntax: order. state =var

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 152

Syntax: var order. state
When an order is in a job chain, then its state must correspond with one of the states of the job chain.

Whilst an order is being processed by a job the following state, as defined in the job chain (<job chain node
next state="">_) has no effect. Similarly, the return values from spooler process()__and
Monitor impl.spooler process after()_are meaningless. This means that with order. state_the following
state for a job can be set as required.

An order is added to the job order queue which is corresponding to its state. See <job chain node>_. The
execution by this job will be delayed until the job currently carrying out the order has been completed.

3.11.16 state_text

Free text for the order state

Syntax: order. state_text =string
Syntax: string order. state_text
This text is shown on the HTML interface.

For non-API jobs the JobScheduler fills this field with the first line from stdout, up to a maximum of 100 characters.

3.11.17 string_next_start_time

The next start time of an order when <run time> is being used
Syntax: string order. string next_start_time

Returned value:
string

"yyyy-mm-dd HH: MM: SS. MMM" Of "now" O "never".

3.11.18 suspended

Suspended order

Syntax: order. suspended =boolean
Syntax: boolean order. suspended
A suspended order will not be executed.

When an order is being carried out by a task when it is suspended, then the spooler process() _step will be
completed and the order allocated the successor state before being suspended.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 153

This means that an order can be set to an end state, which stops it from being removed. The JobScheduler can
remove such an order only when it is not suspended - i.e. order. suspended=false).

A suspended order with the end state can be allocated a different state corresponding to a job node in the job
chain. This is effected by using order. state_. In this case the order remains suspended.

3.11.19 title

Optionally a title can be allocated to an order that will show up in the HTML interface and in the logs.
Syntax: order. title =string

Syntax: string order. title

3.11.20 web_service

The web service to which an order has been allocated

Syntax: Web service_ order. web_service

When an order has not been allocated to a web service, then this call returns the scHEDULER-240 _error.

See also Order. web service or null .

Returned value:
Web service_

3.11.21 web_service_operation

The web service operation to which an order has been allocated

Syntax: Web service operation_ order. web_service_operation

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm?help_URL=scheduler.messages.htm#message_SCHEDULER-240

Javascript API 154

Example: in java

public boolean spooler process() throws Exception

{
Order order = spooler task. order() :;
Web service operation web service operation = order. web service operation();
Web service request request = web service operation. request();

// Decode request data
String request string = new String(request. binary content(),
request. charset name());

process request string ...;

String response string = "This is my response";
String charset name = TUTE=g" e
ByteArrayOutputStream byos = new ByteArrayOutputStream() ;

// Encode response data

Writer writer = new OutputStreamWriter(byos, charset name);
writer. write(response string);

writer. close();

// Respond
Web service response response = web service operation. response();

response. set _content type("text/plain");
response. set charset name(charset name);
response. set binary content(byos. toByteArray()):;
response. send() ;

// Web service operation has finished

return true;

See <web service> , Web service operation and Order. web service operation or null_,

Returned value:
Web service operation_

3.11.22 web_service_operation_or_null

The web service operation to which an order has been allocated, or nul1l

Syntax: Web service operation_ Order. web_service_operation_or_null

See Order. web service operation_, Web service operation_and <web service>_.

Returned value:
Web service operation_

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 155

3.11.23 web_service_or_null
The web service to which an order has been allocated, or null.
Syntax: Web service_ order. web_service_or_null

See also Order. web service._.

Returned value:
Web service_

3.11.24 xml

Order in XML: <order>...</order>
Syntax: string order. xml

Returned value:
string

See <order>

3.11.25 xml_payload

XML payload - an order parameter.

Syntax: order. xml_payload =string xml

Syntax: string order. xml_payload

This property can include an XML document (in addition to the order. params_property).

<xml payload>_contains the XML document root element (instead of it being in #Pcpara coded form).

3.12 Order_queue - The order queue for an order controlled job

An order controlled job (<job order="yes">_has an order queue, which is filled by the orders to be processed by
a job. The orders are sorted according to their priority and the time at which they enter the queue.

Processing means that the JobScheduler calls the spooler process() _method for a task. This method can access
the order using the Task. order_property. Should the spooler process() end without an error (i.e. without any
exceptions), then the JobScheduler removes the order from the order queue. If the order is in a job chain then it is
moved to the next position in the chain.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API

156

3.12.1 length

The number of orders in the order queue

Syntax: int Q. length

3.13 Process_class

See also <process class name="">_.

Example:

var process classs = spooler. process classs;

var process class = process classs.create process class();
process class.name = "my process class";

process classs. add process class(process class);

3.13.1 max_processes
The maximum number of processes that are executed in parallel
Syntax: process_class. max_processes =int

Syntax: int process_class. max_processes

Should more tasks have to be started than allowed by this setting, then these tasks starts would be delayed until

processes become freed. The default setting is 10.

See also <process class max processes="">_.

3.13.2 name

The process class name

Syntax: process_class. name =string

Syntax: string process_class. name

The name can only be set once and may not be changed.

See also <process class name=""> .

3.13.3 remote_scheduler

The address of the remote JobScheduler, which is to execute a process

Software- and Organisations-Service GmbH

March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API

157

Syntax: process_class. remote_scheduler =string

Syntax: string process_class. remote_scheduler

Example:

spooler. process classes. process class("my process class").remote scheduler =
"host: 4444";

See also <process class remote scheduler="">_.

Parameters:

The address is specified in the form: " host:
portnumber".

In addition, the IP address is returned on reading: "
hostname / ipnumber: portnumber”"

Returned value:
string

The address is specified in the form: " host: portnumber”.

In addition, the IP address is returned on reading: " hostname / ipnumber: portnumber"

3.13.4 remove

Removal of the process class

Syntax: process_class. remove ()

Example:

spooler. process classs. process class("my process class").remove();

The JobScheduler delays deletion of the process class as long as tasks are still running. No new tasks will be

started before the class is deleted.

See also <process class. remove>_.

3.14 Process_classes

3.14.1 add_process_class

Adds a process class to the JobScheduler

Syntax: process_classs. add_process_class (Process class pc)

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 158

3.14.2 create_process_class
Creates a new process class
Syntax: Process class_ process_classs. create_process_class ()

Returnds a new Process class_. This class can be made added to the JobScheduler using
Process classes. add process class() _.

Returned value:
Process class_

3.14.3 process_class

Returns a process class

Syntax: Process class_ process_classs. process class (string process class name)
An exception will occur if the process class is not known.

Returned value:
Process class_

3.14.4 process_class_or_null
Returns a process class
Syntax: Process class_ process_classs. process_class_or_null (string process_class_name)

Returned value:
Process class_

null, when the process class is not known.

3.15 Run_time - Managing Time Slots and Starting Times

See <run time>_, Order_.Schedule_.

Example:

var order = spooler task.order;

// Repeat order daily at 15:00
order. run_time.xml = "<run time><period single start='15:00'/></run time>";

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 159

3.15.1 schedule

<schedule>

Syntax: Schedule_ run_time. schedule

Returned value:
Schedule_

3.15.2 xml

<run_time>

Syntax: run_time. xml =string

Discards the current setting and resets Run_time.

Parameters:
XML document as a string

3.16 Schedule - Runtime

See <schedule>_, <run time>_, Spooler. schedule ,Run time_

Example:

spooler. schedule("my schedule").xml = "<schedule><period single start='15:00"'/><
/schedule>";

3.16.1 xml

<schedule>

Syntax: schedule. xml =string

Syntax: string schedule. xml

Deletes the previous setting and resets schedule.

Parameters:
XML document as a string

Returned value:
string

XML document as a string

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 160

3.17 Spooler

There is only one class for this object: spooler .

3.17.1 abort_immediately

Aborts the JobScheduler immediately

Syntax: spooler. abort_immediately ()
Stops the JobScheduler immediately. Jobs do not have the possibility of reacting.

The JobScheduler kills all tasks and the processes that were started using the Task. create subprocess()
method. The JobScheduler also kills processes for which a process ID has been stored using the Task. add pid()
method.

See <modify spooler cmd="abort immediately">_and JobScheduler Documentation.

3.17.2 abort_immediately_and_restart

Aborts the JobScheduler immediately and then restarts it.

Syntax: spooler. abort_immediately_and_restart ()

Similar to the spooler. abort immediately() method, only that the JobScheduler restarts itself after aborting. It
reuses the command line parameters to do this.

See <modify spooler cmd="abort immediately and restart">_and JobScheduler Documentation.

3.17.3 add_job_chain

Syntax: spooler. add_job_chain (Job chain chain)

Job chain. orders recoverable_=true causes the JobScheduler to load the orders for a job chain from the
database.

See spooler. create job chain() _.and <job chain>_.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 161

3.17.4 configuration_directory

Path of the Configuration Directory with hot folders

Syntax: string spooler. configuration_directory

<config configuration directory="..">

3.17.5 create_job_chain

Syntax: Job chain_ spooler. create_job_chain ()

Returns a new Job chain_object. This job chain can be added to the JobScheduler using
Spooler. add job chain() after it has been filled with jobs.

See <job chain>_.

Returned value:
Job chain_

3.17.6 create_order

Syntax: oOrder_ spooler. create_order ()

Creates a new order. This order can be assigned to a job chain using the Job chain. add order() method.

Returned value:
Order_

3.17.7 create_variable_set

Syntax: variable set_ Spooler. create_variable set ()

Returned value:
Variable set_

3.17.8 create_xslt_stylesheet

Syntax: Xslt stylesheet_ spooler. create_xslt_stylesheet (string xml (optional))

Parameters:
xml Creates an XSLT style sheet as an XML string.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 162

Returned value:
Xslt stylesheet_

3.17.9 db_history_table_name

The name of the database table used for the job history

Syntax: string spooler. db_history_table name

See also Spooler.db history table name()

The factory. ini (section[spooler], entry db history table=..) setting is overwritten by this parameter.

3.17.10 db_name

The database path

Syntax: string spooler. db_name

The database connection string for the history. Should no value be specified here, then the files will be saved in
.csv format. See factory. ini (section| spooler], entry history file=..).

A simple file name ending in . mdb (€.g. scheduler. mdb) can also be specified here when the JobScheduler is
running on Windows. The JobScheduler then uses a Microsoft MS Access database of this name, which is located
in the protocol directory (see the option -10g-dir_). Should such a database not exist, then the JobScheduler will
create this database.

The JobScheduler automatically creates the tables necessary for this database.

The factory. ini (section [spooler], entry db=..) setting is overwritten by this parameter.

3.17.11 db_order_history_table _name

The name of the order history database table

Syntax: string spooler. db_order_ history_table_name

See also Spooler.db order history table name()

The factory. ini _(section[spooler] , entry db order history table=..) setting is overwritten by this parameter.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 163

3.17.12 db_orders_table_name

The name of the database table used for orders

Syntax: string spooler. db_orders_table_name

See also Spooler.db orders table name()

The factory. ini (section[spooler], entry db orders table=..) setting is overwritten by this parameter.

3.17.13 db_tasks_table name

The name of the task database table

Syntax: string spooler. db_tasks_table name

See also Spooler.db tasks table name()

The factory. ini _(section[spooler], entry db tasks table=..) setting is overwritten by this parameter.

3.17.14 db_variables_table name

The name of the database table used by the JobScheduler for internal variables

Syntax: string spooler. db_variables_table_name

The JobScheduler records internal counters, for example, the ID of the next free task, in this database table.

See also Spooler.db variables table name()

The factory. ini _(section[spooler], entry db variables table=..) setting is overwritten by this parameter.

3.17.15 directory

The working directory of the JobScheduler on starting

Syntax: string spooler. directory

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API

164

Changes the Working Directory.

A task executed on a remote JobScheduler (<process class remote scheduler="">) returns the value for the

remote Scheduler.

The -cd_option has precedence over this parameter.

A task executed on a remote JobScheduler (<process class remote scheduler="">_) returns the value for the

remote Scheduler.

Returned value:
string

The directory ends on Unix with "/" and on Windows with "\".

3.17.16 execute_xml

Carries out XML commands

Syntax: string spooler. execute xml (string xml)

Example:

spooler log.info(spooler.execute xml("<show state/>"));

Errors are returned as XML <ERROR> replies.

Parameters:
xml See JobScheduler Documentation.

Returned value:
string

Returns the answer to a command in XML format.

3.17.17 hostname

The name of the computer on which the JobScheduler is running.

Syntax: string spooler. hostname

3.17.18 id

The value of the command line -id= setting

Software- and Organisations-Service GmbH

March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 165

Syntax: string spooler. id

The JobScheduler only selects elements in the XML configuration whose spooler id attributes are either empty or
set to the value given here.

When the JobScheduler ID is not specified here, then the JobScheduler ignores the spooler id= XML attribute
and selects all the elements in the XML configuration.

See, for example, <config>_.
The -id_option has precedence over this parameter.

The factory. ini (section [spooler], entry id=..) setting is overwritten by this parameter.

3.17.19 include_path

Returns the command line setting -include-path=.

Syntax: string spooler. include path

The directory of the files which are to be included by the <include>_element.

A task executed on a remote JobScheduler (<process class remote scheduler="">) returns the value for the
remote Scheduler.

Environment variables (e.g. su0ME) are replaced by this attribute (see Settings which Allow Environment Variables
to be Called).

The -include-path_option has precedence over this parameter.

The factory. ini _(section[spooler], entry include path=..) setting is overwritten by this parameter.

<config include path="..">

A task executed on a remote JobScheduler (<process class remote scheduler="">_) returns the value for the
remote Scheduler.

3.17.20 ini_path

The value of the -ini= option (the name of the factory. ini file)
Syntax: string spooler. ini_path

A task executed on a remote JobScheduler (<process class remote scheduler="">_) returns the value for the
remote Scheduler.

See -ini_, JobScheduler Documentation

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 166

3.17.21 is_service

Syntax: boolean spooler. is_service

Returned value:
boolean

is true, when the JobScheduler is running as a service (on Windows) or as a daemon (on Unix).

3.17.22 job

Returns a job
Syntax: Job_ spooler. job (string job name)
An exception is returned should the job name not be known.

Returned value:
Job

3.17.23 job_chain

Returns a job chain

Syntax: Job chain_ spooler. job_chain (string name)

Should the name of the job chain not be known, then the JobScheduler returns an exception.

Returned value:
Job chain_

3.17.24 job_chain_exists

Syntax: boolean spooler. job_chain_exists (string name)

3.17.25 let_run_terminate_and_restart

Syntax: spooler. let_run_terminate_and restart ()

The JobScheduler ends all tasks (by calling the Job impl_method) as soon as all orders have been completed and
then stops itself. It will then be restarted under the same command line parameters.

Software- and Organisations-Service GmbH March 2015

Javascript API

167

See <modify spooler cmd="let run terminate and restart"> and JobScheduler Documentation.

3.17.26 locks

Returns the locks
Syntax: _Locks_ spooler. locks

Returned value:
Locks_

3.17.27 log

The main log
Syntax: Log_ spooler. log
spooler log() _is usually used for this property.

Returned value:
Log_

3.17.28 log_dir

Protocol directory

Syntax: string spooler. log_dir

The directory in which the JobScheduler writes log files.

log dir=*stderr allows the JobScheduler to write log files to the standard output (stderr, normally the screen) .

A task executed on a remote JobScheduler (<process class remote scheduler="">_) returns the value for the

remote Scheduler.

The -10g-dir_option has precedence over this parameter.

The factory. ini _(section[spooler] , entry 1og dir=.) setting is overwritten by this parameter.

A task executed on a remote JobScheduler (<process class remote scheduler="">_) returns the value for the

remote Scheduler.

Software- and Organisations-Service GmbH

March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 168
3.17.29 param

The command line option -param=

Syntax: string spooler. param

Free text. This parameter can be read using spooler. param.

The -param_option has precedence over this parameter.

The factory. ini _(section[spooler], entry param=..) setting is overwritten by this parameter.
3.17.30 process_classes

Returns the process classes

Syntax: _Process classes_ spooler. process_classes

Returned value:

Process classes_

3.17.31 schedule

Returns the schedule_with the name specified or nul1

Syntax: Schedule_ SpOOlel’. schedule (string path)

Returned value:

Schedule_

3.17.32 supervisor_client

Returns the Supervisor_client or nu11

Syntax: Supervisor client_ Spooler. supervisor_client

Returned value:

Supervisor client_

3.17.33 tcp_port

Port for HTTP and TCP commands for the JobScheduler

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 169

Syntax: int spooler. tcp_port

The JobScheduler can accept commands via a TCP port whilst it is running. The number of this port is set here -
depending on the operating system - with a number between 2048 and 65535. The default value is 4444.

The JobScheduler operates a HTTP/HTML server on the same port, enabling it to be reached using a web browser
- e.g. via http://localhost:4444.

The JobScheduler does not respond to the tcp port=0 default setting either with TCP or HTTP protocols. This
setting can therefore be used to block a JobScheduler from being accessed - for example via TCP.

The -tcp-port_option has precedence over this parameter.

<config tcp port=".">

Returned value:
int

0, when no port is open.

3.17.34 terminate

The proper ending of the JobScheduler and all related tasks

Syntax: spooler. terminate (int timeout (optional) , boolean restart (optional) , boolean
all schedulers (optional) , boolean continue exclusive operation (optional))

Ends all tasks (by calling the spooler close()) method and terminates the JobScheduler.

Should a time limit be specified, then the JobScheduler ends all processes still running after this limit has expired.
(Typical processes are tasks which have remained too long in a method call such as spooler process() _.)

See <modify spooler cmd="terminate"> and JobScheduler Documentation.

Parameters:

timeout The time in seconds which the JobScheduler allows for a task to end. After this time the
JobScheduler stops all processes before stopping itself. If this parameter is not set then the
JobScheduler will wait on tasks indefinitely.

restart restart=true allows the JobScheduler to restart after ending.

all_schedu all schedulers=true ends all the JobSchedulers belonging to a cluster (see -exclusive_). This
lers may take a minute.

continue_e continue exclusive operation=true causes another JobScheduler in the Cluster to take

xclusive o pecome active (see -exclusive.).
peration

3.17.35 terminate_and_restart

Correctly terminates the JobScheduler and all tasks before restarting

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 170

Syntax: spooler. terminate_and restart (int timeout (optional))

Similar to the spooler. terminate() _method, but the JobScheduler restarts itself.

See <modify spooler cmd="terminate and restart">_and JobScheduler Documentation.

Parameters:

time The time in seconds which the JobScheduler allows for a task to end. After this time the JobScheduler
out stops all processes before stopping itself. If this parameter is not set then the JobScheduler will wait on
tasks indefinitely.

3.17.36 udp_port

Port for UDP commands for the JobScheduler

Syntax: int spooler. udp_port

The JobScheduler can also accept UDP commands addressed to the port specified in this setting. Note that a UDP
command must fit in a message and that the JobScheduler does not answer UDP commands.

The default value of udp port=0 does not allow the JobScheduler to open a UDP port.
The -udp-port_option has precedence over this parameter.

<config udp port=".">

Returned value:
int

0, when no port is open.

3.17.37 variables

The JobScheduler variables as a variable set
Syntax: variable set_ spooler. variables
The variables can be set in the configuration file using <config> .

Returned value:
Variable set_

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 171

3.18 Spooler_program - Debugging Jobs in Java

Starts the JobScheduler using Java, so that jobs written in Java can be debugged (e.g. using Eclipse). See
Javadoc for information about the methods.

The JobScheduler is started as a Windows application and not as a console program. Output to stderr is lost -
standard output is shown in Eclipse. -10g-dir_shows no output.

See JobScheduler Documentation.

Example:

C:\>java -Djava. library. path=.. —classpath ..\sos. spooler.jar sos.spooler. Spooler program
configuration. scheduler -log-dir=c: \tmp\scheduler

Should the location of the scheduler. dl11l not be specified in $PATHS then it may be set using

-Djava. library. path=...

3.19 Subprocess

A subprocess is a process which can be started using either Task. create subprocess() Or Subprocess. start()

Example: system() - the Simple Execution of a Command
exit code = my system("backup /");

function system(cmd, timeout)

{

var subprocess = spooler task.create subprocess();

try

{
if(timeout) subprocess. timeout = timeout;
subprocess. start(cmd);
subprocess. wait for termination();
return subprocess. exit code;

}

finally

{
subprocess. close() ;

}

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 172

Example:

var subprocess = spooler task.create subprocess();
subprocess. environment("testl") = "one";
subprocess. environment("test2") = "two";
subprocess. ignore error = true;

subprocess. start("sleep 20");

spooler log.info("pid=" + subprocess. pid);
subprocess. timeout = 10;

spooler log.info("wait for termination ...");
var ok = subprocess.wait for termination(10);
spooler log.info("wait for termination ok=" + ok);

if(subprocess. terminated)
{
spooler log.info("exit code=" + subprocess.exit code);
spooler log.info("termination signal=" + subprocess. termination signal);

3.19.1 close

Frees system resources
Syntax: subprocess. close ()

This method should only be called in language with a garbage collector (Java, JavaScript). In all other cases the
task ends immediately.

Should this method have been called in a language with a garbage collector, then the subprocess is no longer
usable.

3.19.2 env

Environment Variables as Variable_sets

Syntax: variable set_ subprocess. env

Example:

var subprocess = spooler task.create subprocess();
subprocess. start(subprocess. env. substitute("${MY HOME}/my program"));
subprocess. wait for termination();

Returns a variable set for the environment variables.

Initially the environment is filled by the environment variables from the calling process. Environment variables can
be removed in that they are set to "". Calling subprocess. start() _hands over environment variables to the
subprocess.

Note that the names of environment variables are case sensitive on UNIX systems.

Software- and Organisations-Service GmbH March 2015

Javascript API 173

Changes made to environment variables after the start of a subprocess have no effect. This is also true for
environment variables changed by the process.

This object cannot be handed over to other objects - it is a part of the task process, whereas the majority of other
objects are part of the JobScheduler process.

Returned value:
Variable set_

3.19.3 environment

Environment variables

Syntax: subprocess. environment (string name) =string value

Example:

// The following two statements have the same effect
subprocess. environment("my variable") = "my value"
subprocess. env. value("my variable") = "my value"

Variables set here are handed over to a new subprocess together with any other environment variables belonging
to the process.

Note that the names of environment variables are case sensitive on UNIX systems.

See also subprocess. env._.

3.19.4 exit_code

Syntax: int subprocess. exit_code

Is only called after subprocess. terminated == true.

3.19.5 ignore_error

Prevents that a job is stopped, should exit code != 0.
Syntax: subprocess. ignore_error =boolean
Syntax: boolean subprocess. ignore_error

Prevents a job from being stopped, when at the end of a task the subprocess ends with subprocess. exit code! =
0.

Should a task not wait for the end of a subprocess with the subprocess. wait for termination_method, then the
JobScheduler waits at the end of the task for the end of any subprocesses. In this case the job is stopped with an
error when a subprocess ends with Subprocess. exit code!= 0.

Software- and Organisations-Service GmbH March 2015

Javascript API 174

This may be avoided using ignore error.

3.19.6 ignore_signal

Prevents a job from being stopped when the task is stopped with a UNIX signal.
Syntax: subprocess. ignore_signal =int

Syntax: int subprocess. ignore_signal

This property does not work on Windows systems, as this system does not support signals.

3.19.7 kill

Stops a subprocess
Syntax: subprocess. kill (int signal (optional))

Parameters:
signal Only on UNIX systems: The ki11() signal. O is interpreted here as 9 (s1Gk1LL, immediate ending).

3.19.8 own_process_group

Subprocesses as a Process Group

Syntax: subprocess. own_process_group = boolean
Syntax: boolean Subprocess. own_process_group
Only available for UNIX systems.

The default setting can be made using factory.ini (section[spooler], entry
SprIOC@SS. own process group:...)_.

own_process_group allows a subprocess to run in its own process group, by executing the setpgid(0, 0) system
call. When the JobScheduler then stops the subprocess, then it stops the complete process group.

3.19.9 pid

Process identification

Syntax: int subprocess. pid

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 175

3.19.10 priority
Process Priority
Syntax: subprocess. priority =int

Syntax: int subprocess. priority

Example:

spooler task. priority = +5; // UNIX: reduce the priority a little

UNIX: The highest priority is -20, the lowest 20. The priority of a task can generally only be reduced and not
increased.

The following priority classes are available on Windows systems 4 "idle", 6 "below normal", 8 "normal", 10
"above normal" and 13 "high" (other values are rounded down). See also Task. priority class_.

Note that an error does not occur, should it not be possible to set the priority of a task.
Note also that a process with a higher priority can block a computer.

The priority of a task can be set independently of the operating system with subprocess. priority class_. See
also Task. priority..

3.19.11 priority_class
Priority Class
Syntax: subprocess. priority class =string

Syntax: string subprocess. priority class

Example:

subprocess. priority class = "below normal";

The following priority classes can be used to set priorities on Windows and UNIX Systems:

Priority Class Windows UNIX
"idle" 4 16
"below normal" 6 6
"normal" 8 0
"above normal" 10 -6
"high" 13 -16

Note that when it is not possible to set a priority for a task - for example, because of inappropriate permissions -
then this must not cause an error. On the other hand, an error will occur should it be attempted to allocate a task a
priority class not listed here.

Note also that a higher priority process can block a computer.

Software- and Organisations-Service GmbH March 2015

Javascript API 176

See also subprocess. priority_, Task. priority class_and Microsoft® Windows® Scheduling Priorities.

3.19.12 start

Starts the process
Syntax: subprocess. start (string| string[] command line)
Windows immediately detects whether the program cannot be executed. In this case the method returns an error.

On UNIX systems the subprocess. exit code_property is set to 99. Before this is done, the end of the process
must be waited on with subprocess. wait for termination() ..

Shell operators such as | , ss and > are not interpreted. The /bin/sh Or c: \windows\system32\cmd. exe programs
must be used to do this. (Note that the actual paths will depend on the installation.)

This process is started on UNIX systems using execvp() and with CreateProcess() on Windows systems.

3.19.13 terminated

Syntax: boolean subprocess. terminated

Verifies that a process has ended. Should the process in question have ended, then the subprocess. exit code
and subprocess. termination signal_classes may be called.

3.19.14 termination_signal
Signal with which a process (only on UNIX systems) ends
Syntax: int subprocess. termination_signal

Is only called, after subprocess. terminated == true.

3.19.15 timeout

Time limit for a subprocess
Syntax: subprocess. timeout =double seconds
After the time allowed, the JobScheduler stops the subprocess (UNIX: with sSTGKTLL).

This time limit does not apply to processes running on remote computers with <process class
remote scheduler="">_.

Software- and Organisations-Service GmbH March 2015

http://msdn.microsoft.com/library/en-us/dllproc/base/scheduling_priorities.asp
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/createprocess.asp

Javascript API 177

3.19.16 wait_for_termination

Syntax: subprocess. wait_for_termination ()
Syntax: boolean subprocess. wait for termination (double seconds)

Parameters:

second Waiting time. Should this parameter not be specified, then the call will take place after the subprocess
s has ended.

Returned value:
boolean

true, after a subprocess has ended.
false, should the subprocess continue beyond the waiting time.

3.20 Supervisor_client

This object is returned by spooler. supervisor client_.

Example:

var supervisor hostname = spooler. supervisor client. hostname;

3.20.1 hostname

The name or IPnumber of the host computer on which the suupervising JobScheduler is running
Syntax: string supervisor_client. hostname

See also <config supervisor="">_,

3.20.2 tcp_port

the TCP port of the supervisor
Syntax: int supervisor_client. tcp_port

See also <config supervisor="">_.

3.21 Task

A task is an instance of a job which is currently running.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 178

A task can either be waiting in a job queue or being carried out.

3.21.1 add_pid

Makes an independent, temporary process known to the JobScheduler
Syntax: spooler_task. add_pid (int pid, string| double| int timeout (optional))

This call is used to restrict the time allowed for processes that have been launched by a task. The JobScheduler
ends all independent processes still running at the end of a task.

A log entry is made each time the JobScheduler stops a process. This does not affect the state of a task.
The <kill task> method stops all processes for which the add pid() method has been called.

A process group ID can be handed over on Unix systems as a negative pid. ki11 then stops the complete process
group.

This time limit does not apply for processes being run on remote computers with <process class
remote scheduler="">_.

3.21.2 call_me_again_when_locks_available

Repeats spooler_open() or spooler_process() as soon as locks become available
Syntax: spooler_task. call_me_again_when_locks_available ()

Causes the JobScheduler to repeat a call of spooler open() _Or spooler process() _, after an unsuccessful
Task. try hold lock() Or Task.try hold lock non exclusive() _as soon as the locks required are available.
The JobScheduler then repeats the call once it holds the locks, so that the first call (i.e. spooler open()) will be
successful.

After this call, true/false values returned by spooler open() _Or spooler process()_has no effect. The
JobScheduler leaves the state of the Task. order_unchanged.

3.21.3 changed_directories

The directory in which the change which started a task occurred
Syntax: string spooler_task. changed directories

See Job. start when directory changed() , Task. trigger files_.

Returned value:
string

Directory names are to be separated using a semicolon.

»n should no change have occurred in a directory.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 179

3.21.4 create_subprocess

Starts a monitored subprocess

Syntax: _Subprocess_ spooler_task. create_subprocess (string| string[] filename_and_arguments
(optional))

Returned value:
Subprocess_

3.21.5 delay_spooler_process

Delays the next call of spooler process()
Syntax: spooler_task. delay spooler process =stri ng|doublelint seconds _or hhmm ss

Only functions in spooler process() ..

3.21.6 end

Ends a task
Syntax: spooler_task. end ()

The JobScheduler no longer calls the spooler process() _method. Instead the spooler close() _method is
called.

This method call can be used at the end of a task to trigger sending a task log. See Log_.

3.21.7 error
Sets an error and stops the current job
Syntax: spooler_task. error =string

Syntax: Error_ spooler_task. error

This method call returns the last error which has occurred with the current task. Should no error have occurred, an
Error_object is returned, with the is _error property setto false.

An error message can also be written in the task log file using Log. error()

Returned value:
string Error_

Software- and Organisations-Service GmbH March 2015

Javascript API 180

3.21.8 exit_code

Exit-Code
Syntax: spooler_task. exit_code =int

Syntax: int spooler_task. exit_code

Example:
spooler log.error("This call of spooler log.error() sets the exit code to 1");
spooler task.exit code = 0; // Reset the exit code

The initial exit-code value is 0 - this is changed to 1 should an error occur. Note that an error is defined here as
occurring when the JobScheduler writes a line in the task log containing "l ERROR] ":

. calling the Log. error() method;
. setting the Task. error_property;
. the script returns an exception.

The job can then set the Task. exit code_property - e.g. in the spooler on error() method.

The exit code resulting from an operating system process executing a task is not relevant here and, in contrast to
jobs with <process> Or <script language="shell">_, is not automatically handed over to this property.

The exit code determines the commands to be subsequently carried out. See <job> <commands on exit code=""
>_for more information.

The exit codes have no influence for API jobs on whether or not a job is stopped (a task error message causes jobs
to be stopped).

3.21.9 history_field

A field in the task history

Syntax: spooler_task. history_ field (string name) =var value
Example:
spooler task. history field("extra") = 4711;

The database table (see factory. ini _(section [spooler], entry db history table=...)) must have a column with
this name and have been declared in the factory. ini (section] job] , entry history columns=..) file.

3.21.10id

The task identifier
Syntax: int spooler task. id

The unique numerical identifier of every task run by a JobScheduler.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 181

3.21.11 job
The job which a task belongs to
Syntax: Job_ spooler_task. job

Returned value:
Job_

3.21.12 order

The current order

Syntax: Order_ spooler_task. order

Example:

var order = spooler task.order;

spooler log.info("order.id=" + order.id + ", order. title=" + order. title);

Returned value:
Order_

null, should no order exist.

3.21.13 params

The task parameters

Syntax: variable set_ spooler_task. params

Example:

var value = spooler task. params.value("parameter3");

Example:

var parameters = spooler task. params;

if(parameters.count > 0) spooler log.info("Parameters given");
var valuel = parameters.value("parameterl");

var value2 = parameters. value("parameter2");

A task can have parameters. These parameters can be set using:

. <params>_in the <job>_element in the configuration file;
. Job. start() _and

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API

182

. <start job>_.

Returned value:
Variable set_

!'= null

3.21.14 priority
Priority of the Current Task
Syntax: spooler_task. priority =int

Syntax: int spooler_task. priority

Example:

spooler task. priority = +5;

// Unix: reduce the priority a little

Unix: The highest priority is -20, the lowest 20. The priority of a task can generally only be reduced and not

increased.

The following priority classes are available on Windows systems 4 "idle", 6 "below normal",

"above normal" and 13 "high" (other values are rounded down). See also Task. priority class_.

Note that an error does not occur, should it not be possible to set the priority of a task.

Note also that a process with a higher priority can block a computer.

The priority of a task can be set independently of the operating system with Task. priority class_.

3.21.15 priority_class

Priority Class of the Current Class

Syntax: spooler_task. priority class =string

Syntax: string spooler_task. priority class

"normal", 10

Example:

spooler task.priority class

"below normal";

The following priority classes can be used to set priorities on Windows and Unix Systems:

Priority Class Windows Unix
"idle" 4 16
"below normal" 6 6
"normal" 8 0

Software- and Organisations-Service GmbH

March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API

183

"above normal" 10

" hlgh" 13

-16

Note that an error will occur should it be attempted to allocate a task a priority class not listed here.

Note also that a higher priority process can block a computer.

See also Task. priority_, Subprocess. priority class_and Microsoft® Windows® Scheduling Priorities.

3.21.16 remove_pid

The opposite to add_pid()

Syntax: spooler_task. remove_pid (int pid)

An error does not occur when the pid has not been added using Task_.

See Task. add pid() _.

3.21.17 repeat

Restarts a task after the specified time

Syntax: spooler_task. repeat =double

(This method actually belongs to the gob_class and has nothing to do with the task currently being processed.)

Should there be no task belonging to the current job running after the time specified has expired, then the
JobScheduler starts a new task. Note that the <run time>_element is considered here, and that the <period

repeat=""> attribute may be temporarily ignored.

Job. delay after error_has priority, should a task return an error.

3.21.18 stderr_path

The path to the file in which stderr task output is captured

Syntax: string spooler_task. stderr_path

Text in stderr is currently interpreted in the ISO-8859-1 character set.

Returned value:
string

»» should a task not run in a separate <process classes>_process.

Software- and Organisations-Service GmbH

March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://msdn.microsoft.com/library/en-us/dllproc/base/scheduling_priorities.asp
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 184

3.21.19 stderr_text

Text written to stderr up to this point by the process that was started by the task.
Syntax: string spooler_task. stderr_text
Text in stderr is currently interpreted in the ISO-8859-1 character set.

Returned value:
string

»n should the task not have been started in a separate process <process classes>_.

3.21.20 stdout_path

The path of the file in which stdout task output is captured
Syntax: string spooler_task. stdout_path
Text in stdout is currently interpreted in the ISO-8859-1 character set.

Returned value:
string

»» should a task not run in a separate <process classes>_process.

3.21.21 stdout_text

Text written to stdout up to this point by the process that was started by the task.
Syntax: string spooler_task. stdout_text
Text in stdout is currently interpreted in the ISO-8859-1 character set.

Returned value:
string

»» should a task not run in a separate <process classes>_process.

3.21.22 trigger _files

File paths in folders monitored with regex
Syntax: string spooler_task. trigger files

Returns the file paths from monitored directories (_Job.start when directory changed()_oOr <
start when directory changed>_) at the time a task is started. Only applies to directories for which a regular
expression has been defined (regex).

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 185

The paths are taken from the addresses defined in Job.start when directory changed()_oOr <
start when directory changed>_and combined with the file names.

The non-API <process>_and <script language="shell">_jobs make the content of Task. trigger files
available to the SCHEDULER TASK TRIGGER FILES environment variable.

See Job. start when directory changed() _and Task. changed directories() _.

Returned value:
string

The file paths are separated by semicolons.

v otherwise

3.21.23 try_hold_lock

Try to hold a lock

Syntax: boolean spooler_task. try_hold lock (string lock path)

Example:

function spooler process()

{

var result = false;
if(spooler task.try hold lock("Georgien") &&
spooler task.try hold lock non exlusive("Venezuela"))

// Task is holding the two locks. Insert processing code here.
result = ...

}

else

{

spooler task.call me again when locks available();

return result;

try lock hold() attempts to retain the lock specified (_Lock), and can be called in:

. spooler open() _: the lock is held for the task being carried out and will be freed after the task has been
completed,

. spooler process() _: the lock is only held for the job step currently being carried out and will be given up
after the step has been completed - i.e. after leaving spooler process() .

When the lock is not available and calling this method returns false then the JobScheduler can be instructed to
either:

. repeat the spooler open() _Or spooler process() _calls as soon as the locks are available using
Task.call me again when locks available() _Or

. end spooler open() OF spooler process() With false, without use of the above-mentioned call, (but with
the expected effect),

. throw a SCHEDULER-469 _warning. This applies for true, which is interpreted as an error.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm?help_URL=scheduler.messages.htm#message_SCHEDULER-469
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API

186

See also <lock. use>_.

Returned value:
boolean

true, when the task retains the lock.

3.21.24 try_hold_lock_non_exclusive

Tries to acquire a non-exclusive lock

Syntax: boolean spooler_task. try_hold lock non_exclusive (string lock path)

The same prerequisites apply as to Task. try hold lock() ..

See <lock. use exclusive="no">..

Returned value:
boolean

true, if the task successfully acquired the lock.

3.21.25 web_service

The Web Service which a task has been allocated to.

Syntax: Web service_ spooler_task. web_service

This property causes an exception when a task has not been allocated to a Web Service.

See also Task. web service or null .

Returned value:
Web service_

3.21.26 web_service_or_null
The Web Service to which a task has been allocated, or nu11.
Syntax: Web service_ spooler_task. web_service or_null

See also Task. web service._.

Returned value:
Web service_

Software- and Organisations-Service GmbH

March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 187

3.22 Variable_set - A Variable_set may be used to pass parameters

Variable_set is used for the JobScheduler variables and task parameters. A new Variable_set is created using
Spooler. create variable set() ..

Variable names are case independent.

The value of a variable is known as a variant in the COM interface (JavaScript, VBScript, Perl). Because variables
are usually written in the JobScheduler database, only variant types which can be converted into strings should be
used here.

The value of a variable in Java is a string. Therefore, a string value is returned when reading this variable, when it
is set as a variant in the COM interface. Nul11l and Empty are returned as null. An error is caused should the value
of a variant not be convertible.

3.22.1 count

The number of variables

Syntax: int variable_set. count

3.22.2 merge

Merges with values from another Variable_set
Syntax: variable_set. merge (Variable set vs)

Variables with the same name are overwritten.

3.22.3 names

The separation of variable names by semicolons

Syntax: string variable_set. names

Example:

var variable set = spooler.create variable set();

spooler log.info('"' + variable set.names + '"'); /) ==>""
variable set("variable 1") = "edno";

variable set("variable 2") = "dwa";

spooler log.info('"' + variable set.names + '"'); /] ==>

"variable 1;variable 2"

var names = variable set.names.split(";");
for(var i in names) spooler log.info(names[i] + "=" + variable set(names[i]));

Software- and Organisations-Service GmbH March 2015

Javascript API 188

Returned value:
string

All variable names should be separated by semicolons.

3.22.4 set_var

Sets a variable

Syntax: variable_set. set_var (string name, var value)

3.22.5 substitute

Replaces $-Variables in a String

Syntax: string variable_set. substitute (string sustitution string)

Example:

subprocess. start(subprocess. env.substitute("${MY HOME}/my program"));

In the example below, the subprocess. env_method is used.

References in the string in the form $ name and ${ name} are replaced by variables.

Returned value:
string

The string containing the substituted $ variables.

3.22.6 value

A variable
Syntax: variable_set. value (string name) =var value
Syntax: var variable_set. value (string name)

Parameters:

name

value empty, should a variable not exist.

Returned value:
var

empty, should a variable not exist.

Software- and Organisations-Service GmbH March 2015

Javascript API 189

3.22.7 xml
Variable set as an XML document
Syntax: variable_set. xml =string

Syntax: string variable set. xml

Example:

var variable set = spooler.create variable set();
spooler log.info(variable set.xml); // Liefert <?xml version='1l.0'?><
sos. spooler. variable set/>

variable set.xml= "<?xml version='1.0'?>" +
"<params>" +
"<param name='surname' value='Meier'/>" +
"<param name='christian name' value='Hans'/>" +
"</params>";
spooler log.info(variable set.xml);
spooler log. info("nachname=" + variable set.value("surname"));
spooler log.info("vorname =" + variable set.value("christian name"));

See <sos. spooler. variable set>_, <params>_.

Parameters:

XML document as a string. Returns <

sos. spooler. variable set> . When setting this
property to an XML value, then the name of the root
element is ignored; <params>_or <

sos. spooler. variable set> may be returned.

Returned value:
string

XML document as a string. Returns <sos. spooler. variable set>_. When setting this property to an XML value,
then the name of the root element is ignored; <params>_0r <sos. spooler. variable set>_may be returned.

3.23 Web_service

See also <web service>

3.23.1 forward_xslt_stylesheet_path

Path to the forwarding XSLT stylesheets

Syntax: string web_service. forward xslt_stylesheet_path

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 190

See also <web service forward xslt stylesheet="">

3.23.2 name

The Name of the JobScheduler Web Service
Syntax: string web_service. name

See also <web service name="">

3.23.3 params

Freely definable parameters
Syntax: variable set_ web_service. params
The Web Services parameters can be set using the <web service>_element.

Returned value:
Variable set_

3.24 Web_service operation

See also <web service>

3.24.1 peer_hostname

Peer (Remote) Host Name

Syntax: string web_service_operation. peer_hostname

Returned value:
string

»» should it not be possible to determine the name.

3.24.2 peer_ip

Peer (Remote) IP Address

Syntax: string web_service_operation. peer_ip

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 191

3.24.3 request

Requests

Syntax: Web service request_ Web_service _operation. request

Returned value:
Web service request_

3.24.4 response

Answers

Syntax: Web service response_ Web_service_operation. response

Returned value:
Web service response_

3.24.5 web_service

Syntax: Web service_ Web_service_operation. web_service

Returned value:
Web service_

3.25 Web_service_request

See Web service operation..

3.25.1 binary_content

Payload as a Byte Array (Java only)
Syntax: web_service_request. binary_content
This property is only available under Java.

The ("Content-Type")header field is used to inform the client how binary content is to be interpreted (see
HTTP/1.1 14.17 Content-Type) and web service request.charset name).

Software- and Organisations-Service GmbH March 2015

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17

Javascript API

192

3.25.2 charset_name

Character Set

Syntax: string web_service_request. charset_name

Example:

spooler log. info(request.content type);
spooler log. info(request.charset name);

spooler log. info(request. header("Content-Type"

//
//
//

var request = spooler task.order. web service operation. request;

==> text/xml;
==> text/=xml
==> utf-8

charset=utf-8

Returns the charset= parameter from the content-Type: header entry.

3.25.3 content_type

Content Type (without parameters)

Syntax: string web_service_request. content_type

Returns the content-Type: header entry, without parameters - e.g. "text/plain".

3.25.4 header

Header Entries

Syntax: string web_service request. header (string name)

Example:

spooler log.info("Content-Type: " +

spooler task. order. web service operation. request. header(

"Content-Type")

)i

Parameters:
name Case is not relevant.

Returned value:
string

Returns " in event of an unrecognized entry.

Software- and Organisations-Service GmbH

March 2015

Javascript API

193

3.25.5 string_content

Payload as Text

Syntax: string web_service_request. string content

The character set to be used is taken from the charset parameter in the headers("Content-Type") (see
HTTP/1.1 14.17 Content-Type). ISO-8859-1 will be used as default, should this parameter not be specified.

The following character sets are recognized:
. ISO-8859-1

. UTF-8 (only on Windows systems and restricted to the ISO-8859-1 characters)

See also Web service request. binary content._.

3.25.6 url

Uniform Resource Locator
Syntax: string web_service_request. url

url = "http: //" + header("Host") + url_path

3.26 Web_service response

Note that the binary content property is only available under Java.

See also <web service>

3.26.1 charset_name

Character set

Syntax: string web_service_response. charset_name

Example:

spooler log.info(request. header("Content-Type"));
spooler log.info(request.content type);
spooler log.info(request.charset name);

var request = spooler task.order.web service operation. request;

==> text/xml;
==> text/xml

charset=utf-8

Reads the charset= parameter from the content-Type: header entry.

Software- and Organisations-Service GmbH

March 2015

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Javascript API 194

3.26.2 content_type
Content-Type (without parameters)
Syntax: string web_service_response. content_type

Reads the content-Type: header without any of the other associated parameters such as charset=.

3.26.3 header
Header Entries
Syntax: web_service_response. header (string name) =string value

Syntax: string web_service response. header (string name)

Example:

spooler log.info("Content-Type: " +
spooler task. order. web service operation. response. header("Content-Type"));

Parameters:
value "n js used for unknown entries.
name The case in which entries are written is not relevant here.

Returned value:
string

nv is used for unknown entries.

3.26.4 send

Sends a Reply

Syntax: web_service_response. send ()

3.26.5 status_code

HTTP Status Code
Syntax: web_service_response. status_code =int

The default setting is 200 (OK).

Software- and Organisations-Service GmbH March 2015

Javascript API

195

3.26.6 string_content

Text payloads

Syntax: web_service_response. string content =string text

Example:

var respo
response.
response.
response.
response.

nse = spooler task.order.web service operation. response;

content type = "text/plain";

charset name = "iso-8859-1";

string content = "This is the answer";
send() ;

The header("Content-Type") must first of all contain a charset parameter such as:

header("Content-Type") = "text/plain;

charset=is0-8859-1";

Text is coded as specified in the charset parameter. ISO-8859-1 will be used as the default value, should this
parameter not be specified.

SeeWeb service request. string content for the character sets which are allowed.

See Web service

response. charset name_.

3.27 Xslt_stylesheet

An XSLT style sheet contains the instructions for the transformation of an XML document.

The XSLT processor is implemented with libxsit .

3.27.1 apply_xml

Applies a style sheet to an XML document.

Syntax: string X. apply _xml (string xml)

3.27.2 close

Frees the style sheet resources

Syntax: X. close

3.27.3 load_file

()

Loads the style sheet from an XML file

Software- and Organisations-Service GmbH

March 2015

http://xmlsoft.org/XSLT/

Javascript API 196

Syntax: X. load_file (string path)

3.27.4 load_xml

Loads the style sheet from an XML document

Syntax: x. load_xml (string xml)

Software- and Organisations-Service GmbH March 2015

Perl API

197

4 Perl API

The following classes are available for Perl:

4.1 Error

4.1.1 code

The error code

Syntax: BSTR $error-> code

4.1.2 is_error

true, should an error have occurred

Syntax: Boolean $error-> is_error

4.1.3 text

The error text (with error code)

Syntax: BSTR $error-> text

4.2 Job

A task can either be waiting in the order queue or be running.

4.2.1 clear_delay_after_error

Resets all delays which have previously been set using delay after error

Syntax: $spooler_job-> clear delay after error(

4.2.2 clear_when_directory_changed

Resets directory notification for all directories which have
start when directory changed()

previously been

set using

Software- and Organisations-Service GmbH

March 2015

Perl API 198

Syntax: $spooler_job-> clear when_directory changed(

4.2.3 configuration_directory
Directory for the job configuration file should dynamic configuration from hot folders be used
Syntax: BSTR $spooler_job-> configuration_directory

»» when a job does not come from a configuration directory.

4.2.4 delay_after_error

Delays the restart of a job in case of an error

Syntax: $spooler_job->LetProperty('delay_ after_error', int error steps, double| int| BSTR
seconds or hhmm ss)

Example:

$spooler job->LetProperty('delay after error', 2, 10); # A 10 second delay
after the 2nd consecutive error

$spooler job->LetProperty('delay after error', 5, '00:01'); # One minute delay

after the 5th consecutive error

$spooler job->LetProperty('delay after error', 10, '24:00'); # A delay of one

day after the 10th consecutive error

$spooler job->LetProperty('delay after error', 20, 'STOP'); # The Job is

stopped after the 20th consecutive error

Should a (first) error occur whilst a job is being run, the JobScheduler will restart the job immediately.
However, after between two and four consecutive errors, the JobScheduler will wait 10 seconds before restarting the
job;

After between five and nine consecutive errors, the job will be restarted after a delay of one minute; After between ten
and nineteen errors, the delay is 24 hours.

The job is stopped after the twentieth consecutive error.

A delay can be specified, should a particular number of errors occur in series. In this case the job will be terminated
and then restarted after the time specified.

This method call can be repeated for differing numbers of errors. A different delay can be specified for each new
method call.

It is possible to set the value of the seconds _or hhmm ss parameter to "sTop" in order to restrict the number of
(unsuccessful) repetitions of a job. The job then is stopped when the number of consecutive errors specified is
reached.

A good position for this call is spooler init() ..

See <delay after error>..

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API 199

Parameters:

error_steps The number of consecutive errors required to initiate the delay

seconds_or_hhmm_ss The delay after which the job will be rerun

4.2.5 delay_order_after_setback
Delays after an order is setback

Syntax: $spooler_job->LetProperty('delay order_after_setback', int setback count, double| int|
BSTR seconds or hhmm ss)

Example:

$spooler job->LetProperty('delay order after setback', 1, 60); # for the 1lst
and 2nd consecutive setbacks of an order:

delay the order 60s.
$spooler job->LetProperty('delay order after setback', 3, '01:00'); # After the
3rd consecutive setback of an order,
the order will be delayed an hour.
$spooler job->LetProperty('max order setbacks', 5); # The 5th setback
sets the order to the error state

A job can delay an order which is currently being carried out with order. setback() _. The order is then positioned
at the rear of the order queue for that job and carried out after the specified time limit.

The number of consecutively occurring setbacks for an order is counted. The delay set after a setback can be
changed using delay order after setback in the event of consecutively occurring setbacks.

See
<delay order after setback>_,

Order. setback() _,

Job. max order setbacks,_,

Job chain. add job() _,

Job. delay after error() ..

Parameters:

setback _cou The number of consecutive errors and therefore setbacks for a job. The setback delay can be
nt varied according to this parameter.

seconds_or_ Time limit for the setback of the order. After expiry of the time limit, the order is reprocessed in the
hhmm_ss same job.

4.2.6 folder_path

The directory in which the job is to be found.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API 200

Syntax: BSTR $spooler_job-> folder path

»v when the job does come from the local (<config configuration directory="">_) configuration file.

Returns the job part relative to the live directory. The path is to start with a slash ("/") and all path components are
to be separated by slashes.

Examples:

. "/somewhere/excel" will be returned for the
c: \scheduler\config\live\somewhere\excel\sample. job. xml job;

. n /" returned for the c: \scheduler\config\live\sample. xml job and

. " (an empty string) returned for a job outside the live directory.

4.2.7 include_path

Value of the -include-path= option
Syntax: BSTR $spooler_job-> include_path

See -include-path_.

4.2.8 max_order_setbacks

Limits the number of setbacks for an order
Syntax: $spooler_job->LetProperty('max order setbacks', int)

An order state is set to "error" (see Job chain node. error state_) when it is set back more than the number of
times specified here (see order. setback()).

See Job. delay order after setback and<delay order after setback is maximum="yes">_.

4.2.9 name

The job path beginning without a backslash
Syntax: BSTR $spooler_job-> name

See <job name="">_.

4.2.10 order_queue

The job order queue

Syntax: Order queue_ $spooler_job-> order queue

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API

201

Example:

$spooler log->info('order=' . (defined S$spooler job->order queue ? "yes"

"no")) ;

Every job order (<job order="yes">_) has an order queue. This queue is filled by the job chain to which the job

belongs.

See Job chain. add order() _, and Job chain. add job() _.

Returned value:
Order queue_

null, should the job have no queue (for <job order="no">).

4.2.11 process_class

The process class
Syntax: Process class_ $spooler_job-> process class

See <job process class="">_.

Returned value:
Process class_

4.2.12 remove

Removes a job

Syntax: $spooler_job-> remove(

The job is stopped - i.e. current tasks are terminated and no new ones are started. The job will be removed as soon

as no more tasks are running.

Tasks queuing are ignored.

When no job task is running, the remove() function deletes the job immediately.

Job orders (<job order="yes">_) cannot be removed.

See <modify job cmd="remove">_.

4.2.13 start

Creates a new task and places it in the task queue

Syntax: Task_ $spooler_job-> start(Variable set variables

(optional)

)

Software- and Organisations-Service GmbH

March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API 202

Example:

$spooler->job('Jjob a')->start();

my $parameters = $spooler->create variable set();
Sparameters->LetProperty('var', 'my parameter', 'my value');
Sparameters->LetProperty('var', 'other parameter', 'other value');
$spooler->job('job a')->start(Sparameters);

The parameters are available to the Task. params_task. Two parameters are particularly relevant here:

"spooler tas |[gives the task a name which then appears in the status display, e.g. in the web interface.
k name"

"spooler sta |[specifies atime in seconds (real number), after which the task is to start. The JobScheduler <
rt_after” run_time>_is ignored in this case.

See spooler. create variable set() _, Spooler. job_, Variable set. value_.

Returned value:
Task_

4.2.14 start_when_directory_changed

Monitors a directory and starts a task should a natification of a change be received

Syntax: $spooler_job-> start_when_directory changed(BSTR directory path, BSTR filename pattern
(optional))

Example:
$spooler job->start when directory changed('c:/tmp');

only relevant for files whose names do not end in "~".
$spooler job->start when directory changed('c:/tmp', '~.*["~]S$');

Should there not be a task belonging to this job running and a notification be received that a change in the directory
being monitored has occurred (that a file has been added, changed or deleted), then this change can be used to
prompt the JobScheduler to start a task if the current time falls within that allowed by the <run time> parameter.

This method can be called a more than once in order to allow the monitoring of a number of directories. A repeat
call can also be made to a directory in order to reactivate monitoring - if, for example, it has not been possible to
access the directory.

This method call can be coded in the JobScheduler start script or in the spooler init() _method. In the latter
case, the job must have been started at least once in order for the method call to be carried out. The <run time
once="yes">_setting should be used for this.

The job should be regularly <run time repeat=""> restarted and <delay after error> set.

The same setting can be made in the XML configuration using the <start when directory changed>_element.

Parameters:
directory_path the address of the directory being monitored

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API 203

filename_patte restricts monitoring to files whose names correspond with the regular expression used.
rn

4.2.15 state_text

Free text for the job state

Syntax: $spooler_job->LetProperty('state_text', BSTR)

Example:

$spooler job->LetProperty('state text', 'Step C succeeded');

The text will be shown in the HTML interface.

4.2.16 title

The job title

Syntax: BSTR $spooler_job-> title

Example:

$spooler log->info('Job title=' . S$spooler job->title);

See <job title="">_,

4.2.17 wake

Causes a task to be started
Syntax: $spooler_job-> wake(
Starts a task, should the job have the pending or stopped states.

See Job. start()

4.3 Job_chain - job chains for order processing

A job chain is a series of jobs (job chain nodes). Orders (order_) proceed along these chains.

Every position in a job chain is assigned a state and a job. When an order is added to the job chain, it is enqueued
by the JobScheduler according to the state of the order. The job assigned to this position then carries out the order.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API 204

Additionally, each position in a job chain has a successor state and an error state. The JobScheduler changes the
state of an order after each job in the job chain has been processed. Should the job step return
(spooler process) true, then the JobScheduler sets the succeeding state; otherwise it sets the error state. The
order then moves to another position in the job chain as defined by the new state. However, this does not apply
when the state is changed during execution with order. state_.

A job chain is created using Spooler.create job chain() _; it is filled using Job chain. add job() _and

Job chain. add end state() and finally made available with Spooler. add job chain() ..

Every node is allocated a unique state. Therefore either Job chain. add job() Or Job chain. add end state()
must be called once for every state.

Example:

my $my job chain = S$spooler->create job chain();
$my job chain->LetProperty('name', 'JobChain');
$my job chain->add job('job 100', 100, 200, 999);
$my job chain->add job('job 200', 200, 1000, 999);
$my job chain->add end state(999);

$my job chain->add end state(1000);
$spooler->add job chain($my job chain);

4.3.1 add_end_state
Adds the end state to a job chain
Syntax: $job_chain-> add_end_state(variant state)

This state is not assigned a job. An order that reaches the final state has completed the job chain and will be
removed from the chain.

4.3.2 add_job

Adds a job to a job chain

Syntax: $job_chain-> add_job(BSTR job name, Variant input state, Variant output state, Variant
error state)

4.3.3 add_or_replace_order

Adds an order to a job chain and replaces any existing order having the same identifier

Syntax: $job_chain-> add_or_replace_order(Order order)

Should the job chain already contain an order with the same identifier, then this order will be replaced. More
accurately: the original order will be deleted and the new one added to the job chain.

As long as an existing order having the same identifier as the new order is being carried out, both orders will be
present. However, the original order will have already been deleted from the job chain and database; it is only
available to the current task and will completely disappear after it has been completed.

Software- and Organisations-Service GmbH March 2015

Perl AP 205

In this case the JobScheduler will wait until the original order has been completed before starting the new one.

See Job chain. add order() _and Order. remove from job chain()

4.3.4 add_order

Adds an order to a job chain

Syntax: Order_ $job_chain—> add_order(Order | BSTR order_or_payload)

Should an order already exist on another job chain, then the JobScheduler removes the order from this other chain.
An order is allocated to the job order queue corresponding to its state, and positioned according to its priority.

The job chain must be specified for the JobScheduler using <job chain>_0r Spooler. add job chain() _.

Should an order with the same order. id_already exist in a job chain, then an exception with the error code
SCHEDULER-186_is returned. However, see also Job chain. add or replace order() _.

Returned value:
Order_

4.3.5 name
The name of a job chain
Syntax: $job_chain->LetProperty('name', BSTR)

Syntax: BsTR $job_chain-> name

Example:

my $job chain = $spooler->create job chain();
$job _chain->LetProperty('name', 'JobChain');

4.3.6 node

The job chain nodes with a given state

Syntax: _Job chain node_ $job_chain—> node(Variant state)

Returned value:
Job chain node_

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm?help_URL=scheduler.messages.htm#message_SCHEDULER-186
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API 206

4.3.7 order_count

The number of orders in a job chain

Syntax: int $job_chain-> order_count

4.3.8 order_queue

= node(state). job().order queue()

Syntax: Order gqueue_ $job_chain-> order_queue(variant state)
Returns the order queue which has a given state.

Returned value:
Order queue_

4.3.9 orders_recoverable

Syntax: $job_chain->LetProperty('orders_recoverable', Boolean)
Syntax: Boolean $job_chain-> orders_recoverable

See <job chain orders recoverable="">_.

4.3.10 remove
Job chain deletion
Syntax: $job_chain-> remove(

Should orders in a job chain still be being processed (in spooler process() _) when the chain is to be deleted,
then the JobScheduler will wait until the last order has been processed before deleting the chain.

Orders remain in the database. Should a new job chain be added which has the same name as a deleted job chain
(spooler. add job chain()), then the JobScheduler will reload any orders from the original job chain which have
remained in the database. Note however, that the states of the orders in the new job chain should be the same as
those in the original chain at the time of its deletion.

4.3.11 title
Syntax: $job_chain->LetProperty('title', BSTR)

Syntax: BsTR $job_chain-> title

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API

207

See <job chain title="">_,

4.4 Job_chain_node

A job chain node is assigned a position in a job chain (_Job chain_). The following elements make up a job chain

node: a state, a job, a successor state and an error state.

A job chain node is created either using Job _chain. add job() Or Job chain. add end state()

4.4.1 action
Stopping or missing out job chain nodes
Syntax: $node->LetProperty('action', BSTR)

Syntax: BSTR $node-> action

Example:
my $job chain node = $spooler->job chain('my job chain')->node(100
$job chain node->LetProperty('action', 'next state');

)i

This option is not possible with distributed job chains.

Possible settings are:

action="process"
This is the default setting. Orders are carried out.

action="stop"
Orders are not carried out, they collect in the order queue.

action="next_state"

Orders are immediately handed over to the next node as specified with next state.

See also <job chain node. modify action="">_.

Character string constonants are defined in Java:

. Job_chain node. ACTION PROCESS
. Job chain node. ACTION STOP
. Job_chain node. ACTION_ NEXT STATE

4.4.2 error_node

The next node in a job chain in the event of an error

Syntax: _Job chain node_ $node-> error_node

Software- and Organisations-Service GmbH

March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API 208

Example:
my $job chain node = $spooler->job chain('Jobchain')->node(100);
Sspooler log->debug('error state=' . $job chain node->error node->state);

// "state=999"

Returned value:
Job chain node_

null, in the event of no error node being defined (the error state has not been specified)

4.4.3 error_state

State of a job chain in event of an error

Syntax: variant $node-> error_state

Example:
my $job chain node = $spooler->job chain('Jobchain')->node(100);
$spooler log->debug('error state=' . $job chain node->error node->state); #

"error state=999"

4.4.4 job

The job allocated to a node

Syntax: _Job_ $node-> job

Example:
my $job chain node = $spooler->job chain('Jobchain')->node(100);
$spooler log->debug('job=' . $job chain node->job->name); #

"job=job 100"

Returned value:
Job

4.4.5 next_node

Returns the next node or null if the current node is assigned the final state.

Syntax: _Job chain node_ $node-> next_node

Returned value:
Job chain node_

Software- and Organisations-Service GmbH March 2015

Perl API 209

4.4.6 next_state

The order state in a job chain after successful completion of a job

Syntax: variant $node-> next_state

Example:
my $job chain node = $spooler->job chain('Jobchain')->node(100);
$spooler log->debug('next state=' . $job chain node->next state); #
"state=200"
4.4.7 state

The valid state for a job chain node

Syntax: variant $node-> state

Example:

my $job chain node = $spooler->job chain('Jobchain')->node(100);

$spooler log->info('state=' . $job chain node->state); #
"state=100"

4.5 Job_impl - Super Class for a Job or the JobScheduler Script

Job methods are called in the following order:

spooler init()
spooler open()
spooler process()
spooler process()

spooler close()
spooler on success() or spooler on error()

spooler exit()

None of these methods must be implemented. However, it is usual that at least the spooler process() _method is
implemented.

An error during carrying out a job script whilst loading or during spooler init() _causesspooler on error() _.to
be called. The job is then stopped and spooler exit() called (although spooler init() _has not been called!).
The script is then unloaded.

Software- and Organisations-Service GmbH March 2015

Perl AP 210

Note that spooler on error() _must also be able to handle errors which occur during loading or in
spooler init() _.

Note also that spooler exit() _is called even though spooler init() _has not been called.

4.5.1 spooler

The JobScheduler base object

Syntax: Spooler_ spooler

Example:

$spooler log->debug('The working directory of the JobScheduler is ' . $spooler->
directory);

Returned value:
Spooler_

4.5.2 spooler_close

Task end
Syntax: spooler_close(

This method is called after a job has been completed. The opposite of this method is spooler open() _.

4.5.3 spooler_exit
Destructor
Syntax: spooler_exit(

Is called as the last method before the script is unloaded. This method can be used, for example, to close a
database connection.

4.5.4 spooler_init
Initialization
Syntax: Boolean spooler init(

The JobScheduler calls these methods once before spooler open() _. This is analog to spooler exit() _. This
method is suitable for initializing purposes (e.g. connecting to a database).

Returned value:

Software- and Organisations-Service GmbH March 2015

Perl API 21

Boolean

false ends a task. The JobScheduler continues using the spooler exit() _method. When the task is processing
an order, then this return value makes the JobScheduler terminate the job with an error. That is, unless a repeated
start interval has been set using Job. delay after error

4.5.5 spooler_job

The job object

Syntax: _Job_ spooler_job

Example:

$spooler log->info('The name of this job is ' . $spooler job->name);

Returned value:
Job_

4.5.6 spooler_log

Event logging object

Syntax: Log_ spooler_log

Example:

$spooler log->info('Something has happened');

Returned value:
Log_

4.5.7 spooler_on_error
Unsuccessful completion of a job
Syntax: spooler_on_error(

Is called at the end of a job after an error has occurred (after spooler close() _but before spooler exit()).

4.5.8 spooler_on_success

Successful completion of a job

Software- and Organisations-Service GmbH March 2015

Perl API 212

Syntax: spooler_on_success(

This method is called by the JobScheduler after spooler close() _and before spooler exit() _; should no error
have occurred.

4.5.9 spooler_open

The Start of a Task

Syntax: Boolean spooler_open(

This method is called immediately after spooler init() .. The opposite of this method is spooler close() ..

4.5.10 spooler_process

Job steps or the processing of an order

Syntax: Boolean spooler_ process(

Processes a job step.

An order driven job stores the current order in Task. order_.

The default implementation returns false. The implementation of an order driven job can set the successor state for
an order by returning true.

Returned value:
Boolean

In the event of standard jobs <job order="no">_: false the JobScheduler ends processing of this job; true> the
JobScheduler continues calling the spooler process() _method.

In the event of order driven jobs <job order="yes">_: false the order acquires the error state (s.
Job chain node_and <job chain node>_). true the order acquires the next state or is terminated if the next state
is the final state. This, however, does not apply when the state is changed during execution using order. state_.

4.5.11 spooler_task

The task object

Syntax: Task_ spooler_task

Example:

$spooler log->info('The task id is ' . S$spooler task->id);

Returned value:
Task_

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl AP 213

4.6 Lock

See also <lock name="">_.

Example:

my $locks = S$spooler->locks;

my $lock = Slocks->create lock();
$lock->LetProperty('name', 'my lock');
$locks->add lock($lock);

4.6.1 max_non_exclusive

Limitation of non-exclusive allocation

Syntax: $lock->LetProperty('max_non_exclusive', int)
Syntax: int $lock-> max_non_exclusive

The default setting is unlimited (231-1), which means that with <lock. use exclusive="no">_any number of
non-exclusive tasks can be started (but only one exclusive task).
The number cannot be smaller than the number of non-exclusive allocations.

See also <lock max non exclusive=""> .

4.6.2 name

The lock name

Syntax: $lock->LetProperty('name', BSTR)
Syntax: BSTR $lock-> name

The name can only be set once and cannot be changed.

See also <lock name="">_.

4.6.3 remove

Removes a lock

Syntax: $lock-> remove(

Example:

$Sspooler->locks->lock(' my lock')->remove();

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API 214

| |

A lock can only be removed when it is not active - that is, it has not been allocated to a task and it is not being used
by a job (<lock. use>).

See also <lock. remove>_.

4.7 Locks

4.7.1 add_lock

Adds a lock to a JobScheduler

Syntax: $locks-> add_lock(Lock lck)

4.7.2 create_lock

Creates a new lock

Syntax: Lock_ $locks-> create_lock(

Returns a new lock Lock . This lock can be added to the JobScheduler using Locks. add lock() ..

Returned value:
Lock_

4.7.3 lock

Returns a lock

Syntax: Lock_ $locks-> lock(BSTR lock name)

An exception will be returned if the lock is unknown.

Returned value:
Lock_

4.7.4 lock_or_null

Returns a lock

Syntax: Lock_ $locks-> lock_or_null(BSTR lock name)

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl AP 215

Returned value:
Lock_

null, when the lock is unknown.

4.8 Log - Logging

The spooler 1og method can be used in a job or in the JobScheduler start script with the methods described here.
Notification by e-mail

The JobScheduler can send a log file after a task has been completed per e-mail. The following properties define in
which cases this should occur.

. Log. mail on error,,

. Log. mail on warning,,

. Log. mail on process._,

. Log. mail on success_and

. Log. mail it

Only the end of a task - and not the end of an order - (i.e. spooler process()) can initiate the sending of e-mails.
However, see Task. end() .

The Log. mail_method makes the Mail_object available, which in turn addresses the mails.

Example:

$spooler log->info("Something for the Log");

$spooler log->LetProperty('mail on warning', 1);

$spooler log->mail->LetProperty('from', 'scheduler@company.com');
$spooler log->mail->LetProperty('to', 'admin@company.com');
$spooler log->mail->LetProperty('subject', 'ended');

4.8.1 debug

Debug message (level -1)

Syntax: $spooler_log-> debug(BSTR line)

4.8.2 debug1

Debug message (level -1)

Syntax: $spooler_log-> debugl(BSTR line)

Software- and Organisations-Service GmbH March 2015

Perl API

216

4.8.3 debug?

Debug message (level -2)

Syntax: $spooler_log-> debug2(

4.8.4 debug3

Debug message (level -3)

Syntax: $spooler_log-> debug3(

4.8.5 debug4

Debug message (level -4)

Syntax: $spooler_log-> debug4(

4.8.6 debug5

Debug message (level -5)

Syntax: $spooler_log-> debug5(

4.8.7 debugb

Debug message (level -6)

Syntax: $spooler_log-> debugé(

4.8.8 debug?

Debug message (level -7)

Syntax: $spooler_log-> debug7(

4.8.9 debug8

Debug message (level -8)

BSTR

BSTR

BSTR

BSTR

BSTR

BSTR

line

line

line

line

line

line

Software- and Organisations-Service GmbH

March 2015

Perl API 217

Syntax: $spooler_log-> debug8(BSTR line)

4.8.10 debug9

Debug message (level -9)

Syntax: $spooler_log-> debug9(BSTR line)

4.8.11 error

Error Message (Level 1)
Syntax: $spooler_log-> error(BSTR line)

A job stops after a task has ended, should an error message have been written in the task log (spooler 1og_)and
<job stop on error="no">_not have been set.

4 .8.12 filename

Log file name

Syntax: BsTR $spooler_log-> filename

4.8.13 info

Information message (Level 0)

Syntax: $spooler_log-> info(BSTR line)

4.8.14 last

The last output with the level specified

Syntax: BSTR $spooler_log-> last(int| BSTR level)

4.8.15 last_error_line

The last output line with level 2 (error)

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API

218

Syntax: BsTR $spooler_log-> last_error_line

4.8.16 level

Limit protocol level

Syntax: $spooler_log->LetProperty('level', int)

Syntax: int $spooler_log-> level

Defines the level with which protocol entries should be written. Every protocol entry is given one of the following
categories: error, warn, info, debugl t0 debug9 (debugl is the same as debug).

Only messages above the level specified will be given out.

The meanings of the numerical values are:

-9to-2: debug9 t0 debug2
-1: debug

0: info

1: warn

2: error

The -10g-1evel option has precedence over this parameter.

The factory. ini _(section[job] , entry 1og level=..) setting is overwritten by this parameter.

The factory. ini _(section[spooler], entry 1og level=..) setting is overwritten by this parameter.

Only messages above the level specified will be given out.

The meanings of the numerical values are:

-9 to -2: debug9 to debug?
-1: debug
0: info
1 warn
2: error
4.8.17 log

Writes in the log file with the specified level.

Syntax: $spooler_log-> log(int level,

BSTR line)

Software- and Organisations-Service GmbH

March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl AP 219

4.8.18 log_file

Adds the content of a file to the log file
Syntax: $spooler_log-> 1og file(BSTR path)
Log the content of a file with level 0 (info). An error occurring whilst accessing the file is logged as a warning.

Note that when executed on a remote computer with <process class remote scheduler="">_the file is read
from the JobScheduler's file system and not that of the task.

4.8.19 mail

E-mail settings are made in the Mai1 Object
Syntax: $spooler_log->LetProperty('mail', Mail)
Syntax: Mail_ $spooler log-> mail

Returned value:
Mail_

4.8.20 mail_it

Force dispatch

Syntax: $spooler_log->LetProperty('mail_it', Boolean)

If this property is set to true, then a log will be sent after a task has ended, independently of the following settings:

Log. mail on error_, Log.mail on warning_, Log.mail on success_, Log.mail on process_ and

Log. mail on error_.

4.8.21 mail_on_error

Sends an e-mail should a job error occur. Errors are caused by the Log. error() _method or by any exceptions that
have not been caught by a job.

Syntax: $spooler_log->LetProperty('mail_on_error', Boolean)

Syntax: Boolean $spooler_log-> mail on_error

Content of the e-mail is the error message. The log file is sent as an attachment.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API 220

The factory. ini (section[job], entrymail on error=..) setting is overwritten by this parameter.

The factory. ini _(section[spooler], entrymail on error=..) setting is overwritten by this parameter.

Content of the e-mail is the error message. The log file is sent as an attachment.

4.8.22 mail_on_process

Sends an e-mail should a job have successfully processed the number of steps specified. Steps are caused by the
spooler process() _methods:

Syntax: $spooler_log->LetProperty('mail_on_process', int)

Syntax: int $spooler_log-> mail on_process

Causes the task log to be sent when a task has completed at least the specified number of steps - i.e. calls of
spooler process() _. Because non-API tasks do not have steps, the JobScheduler counts each task as a single
step.

Content of the e-mail is the success message. The log file is sent as an attachment.

The factory. ini _(section[job] , entry mail on process=..) setting is overwritten by this parameter.

The factory. ini _(section[spooler],entrymail on process=..) setting is overwritten by this parameter.

Content of the e-mail is the success message. The log file is sent as an attachment.

4.8.23 mail_on_success
Sends an e-mail should a job terminate successfully.
Syntax: $spooler_log->LetProperty(' mail_on_success', Boolean)

Syntax: Boolean $spooler_log-> mail on_success

The success message forms the content of the e-mail. The log file is sent as an attachment.

The factory. ini _(section[job] , entry mail on success=..) setting is overwritten by this parameter.

The factory. ini _(section[spooler],entrymail on success=..) setting is overwritten by this parameter.

The success message forms the content of the e-mail. The log file is sent as an attachment.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API 221

4.8.24 mail_on_warning
Sends an e-mail should a job warning occur. Warnings are caused by the Log. warn() method.
Syntax: $spooler_log->LetProperty(' mail_on_warning', Boolean)

Syntax: Boolean $spooler_log-> mail on_warning

The warning forms the content of the e-mail. The log file is sent as an attachment.

The factory. ini _(section[spooler],entrymail on warning=..) setting is overwritten by this parameter.

The warning forms the content of the e-mail. The log file is sent as an attachment.

4.8.25 new_filename

A new name for the log file
Syntax: $spooler_log->LetProperty('new filename', BSTR)
Syntax: BSTR $spooler_log-> new filename

Sets the name of the log file. The JobScheduler copies a log into this file after a log has been made. This file is
then available to other applications.

4.8.26 start_new _file

Only for the main log file: closes the current log file and starts a new one

Syntax: $spooler_log-> start_new file(

4.8.27 warn

Warning (Level 2)

Syntax: $spooler_log-> warn(BSTR line)

4.9 Mail - e-mail dispatch

See Log. mail .

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API 222

4.9.1 add_file

Adds an attachment

Syntax: $mail-> add_file(BSTR path, BSTR filename for mail (optional) , BSTR content type
(optional) , BSTR encoding (optional))

Example:
$spooler log->mail->add file('c:/tmp/l.txt', '1l.txt', 'text/plain', 'quoted-printable'
) i
Parameters:
path path to the file to be appended
filename _for mail The file name to appear in the message
content_type "text/plain" is the preset value.
encoding €.g."quoted printable"

4.9.2 add_header _field

Adds a field to the e-mail header

Syntax: $mail-> add_header_field(BSTR field name, BSTR value)

4.9.3 bce
Invisible recipient of a copy of a mail, (blind carbon copy)
Syntax: $mail->LetProperty('beec', BSTR)

Syntax: BSTR $mail-> bee

Example:

$spooler log->mail->LetProperty('bcc', 'hans@company.com');

Multiple addresses (separated by commas) can be specified when the hostware uses JavaMail to send e-mails.

See javax.mail.InternetAddress.parse(String).

The factory. ini _(section[job] , entry 1og mail bcc=..) setting is overwritten by this parameter.

The factory. ini _(section[spooler], entry 1og mail bcc=..) setting is overwritten by this parameter.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://java.sun.com/products/javamail/javadocs/javax/mail/internet/InternetAddress.html#parse(java.lang.String)
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API 223

Multiple addresses (separated by commas) can be specified when the hostware uses JavaMail to send e-mails.

See javax.mail.InternetAddress.parse(String).

4.9.4 body
Message content
Syntax: $mail->LetProperty('body', BSTR)

Syntax: BSTR $mail-> body

Example:

$spooler log->mail->LetProperty('body', 'Job succeeded');

Line feed / carriage return is coded with \n (chr(10) in VBScript).

4.9.5cc
Recipient of a copy of a mail, (carbon copy)
Syntax: $mail->LetProperty('ec', BSTR)

Syntax: BSTR $mail-> cc

Example:

$spooler log->mail->LetProperty('cc', 'hans@company.com');

Multiple addresses (separated by commas) can be specified when the hostware uses JavaMail to send e-mails.

See javax.mail.InternetAddress.parse(String).

The factory. ini_(section[job] , entry 1og mail cc=..) setting is overwritten by this parameter.

The factory. ini (section[spooler], entry 1og mail cc=..) setting is overwritten by this parameter.

Multiple addresses (separated by commas) can be specified when the hostware uses JavaMail to send e-mails.

See javax.mail.InternetAddress.parse(String).

Software- and Organisations-Service GmbH March 2015

http://java.sun.com/products/javamail/javadocs/javax/mail/internet/InternetAddress.html#parse(java.lang.String)
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://java.sun.com/products/javamail/javadocs/javax/mail/internet/InternetAddress.html#parse(java.lang.String)
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://java.sun.com/products/javamail/javadocs/javax/mail/internet/InternetAddress.html#parse(java.lang.String)

Perl API 224

4.9.6 dequeue
Repeated attempts can be made to send messages from the queue dir directory
Syntax: int $mail-> dequeue(

See Mail. dequeue log,, factory.ini (section[spooler].entrymail queue dir=.).

Returned value:
int

The number of messages sent

4.9.7 dequeue_log

The dequeue() Iog

Syntax: BSTR $mail-> dequeue log

Example:
my $count = S$spooler log->mail->dequeue();
$spooler log->info(S$count . ' messages from mail queue sent');

$spooler log->info(S$spooler log->mail->dequeue log);

See Mail. dequeue() _.

4.9.8 from
Sender
Syntax: $mail->LetProperty('from , BSTR)

Syntax: BsTR $mail-> from

Example:

$spooler log->mail->LetProperty('from', 'scheduler@company.com');

The factory. ini _(section[job] , entry 1og mail from=..) setting is overwritten by this parameter.

The factory. ini _(section[spooler], entrylog mail from=..) setting is overwritten by this parameter.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API 225

4.9.9 queue_dir
The directory used for returned e-mails
Syntax: $mail->LetProperty('queue_dir', BSTR path)

Syntax: BSTR $mail-> queue_dir

E-mails which cannot be sent (because, for example, the SMTP server cannot be contacted) are stored in this
directory.

In order to send these e-mails later it is necessary to write a job which calls up the Mail. dequeue() method.

This setting is generally made in sos. ini (section[mail], entry gueue dir=..).

Environment variables (e.g. sHOME) are replaced by this attribute (see Settings which Allow Environment Variables
to be Called).

The factory. ini _(section[job] , entry mail gqueue dir=..) setting is overwritten by this parameter.

The factory. ini _(section[spooler], entry mail queue dir=..) setting is overwritten by this parameter.

The sos. ini (section[mail], entry queue dir=..) setting is overwritten by this parameter.

4.9.10 smtp
The name of the SMTP server
Syntax: $mail->LetProperty('smtp', BSTR)

Syntax: BSTR $mail-> smtp

Example:

$spooler log->mail->LetProperty('smtp', 'mail.company.com');

These settings are generally made using sos. ini (section| mail], entry smtp=...).

smtp=-queue Stops e-mails being sent. Instead mails are written into the file specified in queue dir. See also
sos. ini_(section[mail], entry queue only=..).

The factory. ini _(section[job] , entry smtp=..) setting is overwritten by this parameter.

The factory. ini_(section[spooler], entry smtp=..) setting is overwritten by this parameter.

The sos. ini (section[mail], entry smtp=..) setting is overwritten by this parameter.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API 226

4.9.11 subject
Subject, re
Syntax: $mail->LetProperty('subject', BSTR)

Syntax: BsSTR $mail-> subject

Example:

$spooler log->mail->LetProperty('subject', 'Job succeeded');

The factory. ini _(section] job] , entry 1og mail subject=..) setting is overwritten by this parameter.

The factory. ini (section[spooler], entry 1og mail subject=..) setting is overwritten by this parameter.

49.12 to
Recipient
Syntax: $mail->LetProperty('to', BSTR)

Syntax: BsTR $mail-> to

Example:

$spooler log->mail->LetProperty('to', 'admin@company.com');

Multiple addresses (separated by commas) can be specified when the hostware uses JavaMail to send e-mails.

See javax.mail.InternetAddress.parse(String).

The factory. ini _(section[job] ,entry 1og mail to=..) setting is overwritten by this parameter.

The factory. ini _(section[spooler], entry log mail to=..) setting is overwritten by this parameter.

Multiple addresses (separated by commas) can be specified when the hostware uses JavaMail to send e-mails.

See javax.mail.InternetAddress.parse(String).

4.9.13 xslt_stylesheet

The XSLT style sheet for e-mail processing. Before sending an e-mail the JobScheduler creates an XML document
containing the e-mail headers, subject and body. The content of these elements can be adjusted or overwritten by

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://java.sun.com/products/javamail/javadocs/javax/mail/internet/InternetAddress.html#parse(java.lang.String)
http://java.sun.com/products/javamail/javadocs/javax/mail/internet/InternetAddress.html#parse(java.lang.String)

Perl API 227

an individual XSLT style sheet. This can be used e.g. to create translations of e-mail content. Having processed the
XSLT style sheet the JobScheduler sends the resulting content of the XML elements as e-mail.

Syntax: Xslt stylesheet_ $mail-> xslt_stylesheet

Returned value:
Xslt stylesheet_

The XSLT style sheet as a string

4.9.14 xslt_stylesheet_path

The path and file name of the XSL style sheet for e-mail processing.

Syntax: $mail->LetProperty('xslt_stylesheet path', BSTR path)

Example:

$spooler log->mail->LetProperty('xslt stylesheet path', 'c:/stylesheets/mail.xslt');

The path to the XSLT style sheet. XSLT style sheets are used by the JobScheduler for the preparation of e-mails.
At the time of writing (April 2006) this subject is not documented.

<config mail xslt stylesheet="..">
Parameters:
path The path of the file containing the XSLT style sheet

4.10 Monitor_impl - Using Super Classes for Start Scripts or Jobs

A job can be given a monitor using <monitor>_.

A monitor can provide the following methods:

Monitor impl. spooler task before()
Before starting a task - can prevent a task from being started.

Monitor impl. spooler task after()
After a task has been completed.

Monitor impl. spooler process before()
Before spooler process() -this method can stop spooler process() from being called.

Monitor impl. spooler process after()
After spooler process() - can be used to change its return value.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API

228

4.10.1 spooler

The JobScheduler Object

Syntax: Spooler_ spooler

Example:

directory);

$spooler log->debug('The working directory of the JobScheduler is '

$spooler->

Is the same object as spooler_in the Job impl class.

Returned value:
Spooler_

4.10.2 spooler_job

The Job Object

Syntax: Job_ spooler_job

Example:

$spooler log->info('The name of this job is '

$spooler job->name);

Is the same object as spooler job_ inthe Job impl class.

Returned value:
Job_

4.10.3 spooler_log
Writing Log Files

Syntax: Log_ spooler log

Example:

$spooler log->info('Something has happened');

Is the same object as spooler log.inthe Job impl class.

Returned value:
Log_

Software- and Organisations-Service GmbH

March 2015

Perl API 229

4.10.4 spooler_process_after

After spooler process()

Syntax: Boolean spooler process_after(Boolean spooler process result)

Example: in java

public boolean spooler task after(boolean spooler process result) throws Exception

{
spooler log.info("SPOOLER TASK BEFORE()");

spooler log. info("spooler process() didn't throw an exception and delivered " +
spooler process result);
return spooler process result; // Unchanged result

}

The JobScheduler calls this method after spooler process() _has been carried out.

Parameters:
spooler_process The return value from the spooler process() is setto false, should spooler process()
_result have ended with an exception.

Returned value:
Boolean

Replaces the return value from the spooler process() method or false, should spooler process() have ended
with an error.

4.10.5 spooler_process_before

Before spooler process()

Syntax: Boolean spooler_process_before(

Example: in java

public boolean spooler process before() throws Exception

{
spooler log.info("SPOOLER PROCESS BEFORE()");
return true; // spooler process() will be executed

Software- and Organisations-Service GmbH March 2015

Perl API

230

Example: in java

public boolean spooler process before() throws Exception
{

boolean continue with spooler process = true;

if(!are needed ressources available())

{
spooler task. order().setback();

continue with spooler process false;

return continue with spooler process;

This method is called by the JobScheduler before each call of spooler process() .

Returned value:
Boolean

false prevents further calls to spooler process() _. The JobScheduler continues as though false had been

returned by spooler process() false.

4.10.6 spooler_task

The Task Object

Syntax: Task_ spooler_task

Example:

$spooler log->info('The task id is ' . $spooler task->id);

Is the same object as spooler task_in the Job impl class.

Returned value:
Task_

4.10.7 spooler_task_after

After Completing a Task

Syntax: spooler_task_after(

Example: in java

public void spooler task after() throws Exception

{
spooler log.info("SPOOLER TASK AFTER()");

Software- and Organisations-Service GmbH

March 2015

Perl API

231

This method is called by the JobScheduler after a task has been completed.

4.10.8 spooler_task before

Before Starting a Task

Syntax: Boolean spooler_task_before(

Example: in java

public boolean spooler task before() throws Exception
{
spooler log. infol("SPOOLER TASK BEFORE()");
return true; // Task will be started
//return false; // Task will not be started

This method is called by the JobScheduler before a task is loaded.

Returned value:
Boolean

false does not allow a task to start and Monitor impl.spooler task after() will not be called.

4 .11 Order - Order

See JobScheduler Documentation, spooler. create order() _, Job chain. add order() _, Task. order_.

File order

A file order is an order with for which the scheduler file path parameter has been set: order. params_.

Variable set. value()

See JobScheduler Documentation.

Software- and Organisations-Service GmbH

March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API 232

Example: An Order with a simple Payload

Create order:

{
my $order = S$spooler->create order();
Sorder->LetProperty('id' , 1234);
Sorder->LetProperty('title' , '"This is my order');
Sorder->LetProperty('state text', 'This is my state text');
Sorder->LetProperty('payload' , '"This is my payload');
$spooler->job chain('my job chain')->add order(S$order);

}

Process order:

sub spooler process()

{
my $order = $spooler task->order;
$spooler log->info('order. payload=' + Sorder->payload);
return 1;

}

Example: Creating an Order with a Variable_set as a Payload

Create order:

{
my Svariable set = $spooler->create variable set();
$variable set->set var('param one', 111);
$variable set->set var('param two', 222);
my Sorder = $spooler->create order();
Sorder->LetProperty('id' , 1234);
$order->LetProperty('payload', Svariable set);
$spooler->job chain('my job chain')->add order($order);

}

Process order:

sub spooler process()

{
my Sorder = $spooler task->order;
my Svariable set = Sorder->payload;
$spooler_log—>info(' param one=' . $variable_set—>value(' param one'));
$spooler_log—>info(' param two=' . $variable_set—>value(' param two'));
return 1;

}

4.11.1 at

The order start time

Syntax: $order->LetProperty('at', BSTR| DATE)

Example:
Sorder->LetProperty('at', "nowt+t60");
$spooler->job chain("my job chain")->add order(S$order);

Software- and Organisations-Service GmbH

March 2015

Perl API 233

Used to set the start time before an order is added to an order queue. The following can be specified as a string:

3 "now"

. "yyyy-mm-dd HH: MM : SS]"
. "now + HH: MM : SS1"

. "now + seconds"

This setting changes start times set by order. run time_Or Order. setback() _.

See <add order at="">_.

4.11.2 end_state

The state that should be reached when an order has been successfully completed
Syntax: $order->LetProperty('end_state', Variant)
Syntax: variant $order-> end_state

When an order has its own end_state other than "" then it is considered to be completed after the job allocated to
this end state has been completed and before the order otherwise leaves this state (see <job chain node>_for
example to continue to another job which usually comprises a part of the job chain).

The state specified has to reference a valid state of a job node in the job chain.

411.3id

Order Identification
Syntax: $order->LetProperty('id', Variant)
Syntax: variant $order-> id

Every order has an identifier. This identifier must be unique within a job chain or job order queue. It should also
correspond to the data being processed. Normally database record keys are used.

When an id is not set, then the JobScheduler automatically allocates one using Job chain. add order() _.

4.11.4 job_chain

The job chain containing an order
Syntax: Job chain_ $order-> job_chain

Returned value:
Job chain_

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API 234

4.11.5 job_chain_node

The job chain nodes which correspond with the order state

Syntax: Job chain node_ $order-> job_chain_node

Returned value:
Job chain node_

4.11.6 log

Order log

Syntax: Log_ $order-> log

Example:

spooler task. order. log. info("Only for order log, not for task log");
spooler log. info("For both order log and task log");

Example:

$spooler task->order->log->info('Only for order log, not for task log');
$spooler log->info('For both order log and task log');

Returned value:
Log_

4.11.7 params

The order parameters

Syntax: $order->LetProperty('params', Variable set)

Syntax: variable set_ $order-> params

params is held in order. payload_, the latter cannot, therefore, be used together with params.
See <add order>_.

Returned value:
Variable set_

4.11.8 payload

Load - an order parameter.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl AP 235

Syntax: $0I’del’->LetProperty(' payload', Variable set | BSTR| int| .. payload)
Syntax: variable set_|BSTR|int|. $order-> payload

Instead of this property, the use of oOrder.params_is recommended, which corresponds to
(Variable_set) order. payload.

In addition to order. id_which identifies an order, this field can be used for other information.

See Order. params_and Order. xml payload..

Parameters:
payload May be a string or a variable set..

Returned value:
Variable set_|BSTR|int].

May be a string or a variable set_.

4.11.9 payload_is_type
Checks the payload COM-Type
Syntax: Boolean $order-> payload_is_type(BSTR type name)

Parameters:

type_name "Spooler. Variable set","Hostware.Dyn obj" OF "Hostware. Record".

4.11.10 priority

Orders with a higher priority are processed first
Syntax: $order->LetProperty('priority', int)

Syntax: int $order-> priority

4.11.11 remove_from_job_chain

Syntax: $order-> remove from job_chain(

Note that when an order has just been started by a task, then the order. job chain_property will still return the job
chain from which the order has just been removed, using this call, even when "remove from job chain" has
been carried out. It is only when the execution has been ended that this method returns nu11. (other than when the
order has just been added to a job chain). This ensures that the job_chain property remains stable whilst a task is
being executed.

Software- and Organisations-Service GmbH March 2015

Perl API 236

4.11.12 run_time

<run_time> is used to periodically repeat an order

Syntax: Run time_ $order-> run_time

Example:

$order->run_time->LetProperty("xml", "<run time><at at='2006-05-23 11:43:00'/><
/run_time>");

See <run time>..

The <modify order at="now">_command causes an order which is waiting because of run time to start
immediately.

Returned value:
Run time_

4.11.13 setback

Delays an order back for a period of time
Syntax: $order-> setback(

An order will be delayed and repeated after the period of time specified in either <delay order after setback>
or Job. delay order after setback_. When the job is repeated, only the spooler process() job function is
repeated. If the order. setback() function is called from spooler process(), then the retrun value from
spooler process() will have no effect. .

An order counts the number of times this method is called in sequence. This count is then used by
delay order after setback>_. It is set to 0, when spooler process()_is completed without
delay order after setback> _being called. All counters are set to 0 when the JobScheduler is started.

INIA

The <modify order at="now"> command causes a blocked order to start immediately.

4.11.14 setback_count
How many times the order is setting back?
Syntax: int $order-> setback_count

see also <delay order after setback>..

4.11.15 state

The order state

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API 237

Syntax: $0I’del’->LetProperty('state', Variant)
Syntax: variant $order-> state
When an order is in a job chain, then its state must correspond with one of the states of the job chain.

Whilst an order is being processed by a job the following state, as defined in the job chain (<job chain node
next state="">_) has no effect. Similarly, the return values from spooler process()__and
Monitor impl.spooler process after()_are meaningless. This means that with order. state_the following
state for a job can be set as required.

An order is added to the job order queue which is corresponding to its state. See <job chain node>_. The
execution by this job will be delayed until the job currently carrying out the order has been completed.

4.11.16 state_text

Free text for the order state

Syntax: $order->LetProperty('state_text', BSTR)
Syntax: BSTR $order-> state_text

This text is shown on the HTML interface.

For non-API jobs the JobScheduler fills this field with the first line from stdout, up to a maximum of 100 characters.

4.11.17 string_next_start_time
The next start time of an order when <run_time> is being used
Syntax: BSTR $order-> string next_start_time

Returned value:
BSTR

"yyyy-mm-dd HH: MM: SS. MMM" O "now" OI "never".

4.11.18 suspended

Suspended order

Syntax: $Order—>LetProperty(' suspended' , Boolean)
Syntax: Boolean $order-> suspended

A suspended order will not be executed.

When an order is being carried out by a task when it is suspended, then the spooler process() _step will be
completed and the order allocated the successor state before being suspended.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API 238

This means that an order can be set to an end state, which stops it from being removed. The JobScheduler can
remove such an order only when it is not suspended - i.e. order. suspended=false).

A suspended order with the end state can be allocated a different state corresponding to a job node in the job
chain. This is effected by using order. state_. In this case the order remains suspended.

4.11.19 title

Optionally a title can be allocated to an order that will show up in the HTML interface and in the logs.
Syntax: $order->LetProperty('title', BSTR)

Syntax: BSTR $order-> title

4.11.20 web_service

The web service to which an order has been allocated

Syntax: Web service_ $order-> web_service

When an order has not been allocated to a web service, then this call returns the scHEDULER-240 _error.

See also Order. web service or null .

Returned value:
Web service_

4.11.21 web_service operation

The web service operation to which an order has been allocated

Syntax: _Web service operation_ $order-> web_service_operation

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm?help_URL=scheduler.messages.htm#message_SCHEDULER-240

Perl API 239

Example: in java

public boolean spooler process() throws Exception

{
Order order = spooler task. order() :;
Web service operation web service operation = order. web service operation();
Web service request request = web service operation. request();

// Decode request data
String request string = new String(request. binary content(),
request. charset name());

process request string ...;

String response string = "This is my response";
String charset name = TUTE=g" e
ByteArrayOutputStream byos = new ByteArrayOutputStream() ;

// Encode response data

Writer writer = new OutputStreamWriter(byos, charset name);
writer. write(response string);

writer. close();

// Respond
Web service response response = web service operation. response();

response. set _content type("text/plain");
response. set charset name(charset name);
response. set binary content(byos. toByteArray()):;
response. send() ;

// Web service operation has finished

return true;

See <web service> , Web service operation and Order. web service operation or null_,

Returned value:
Web service operation_

4.11.22 web_service_operation_or_null

The web service operation to which an order has been allocated, or nul1l

Syntax: ieb service operation_ $order-> web_service_operation_or_null

See Order. web service operation_, Web service operation_and <web service>_.

Returned value:
Web service operation_

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl AP 240

4.11.23 web_service_or_null
The web service to which an order has been allocated, or null.
Syntax: ieb service_ $order-> web_service or_ null

See also Order. web service._.

Returned value:
Web service_

4.11.24 xml

Order in XML: <order>...</order>
Syntax: BsTR $order-> xml

Returned value:
BSTR

See <order>

4.11.25 xml_payload

XML payload - an order parameter.

Syntax: $order->LetProperty('xml_payload , BSTR xml)

Syntax: BSTR $order-> xml_payload

This property can include an XML document (in addition to the order. params_property).

<xml payload>_contains the XML document root element (instead of it being in #Pcpara coded form).

4.12 Order_queue - The order queue for an order controlled job

An order controlled job (<job order="yes">_has an order queue, which is filled by the orders to be processed by
a job. The orders are sorted according to their priority and the time at which they enter the queue.

Processing means that the JobScheduler calls the spooler process() _method for a task. This method can access
the order using the Task. order_property. Should the spooler process() end without an error (i.e. without any
exceptions), then the JobScheduler removes the order from the order queue. If the order is in a job chain then it is
moved to the next position in the chain.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API 241

4.12.1 length

The number of orders in the order queue

Syntax: int $g-> length

4.13 Process_class

See also <process class name="">_.

Example:
my Sprocess classs = $spooler->process classes;
my Sprocess class = $process classs->create process class();
Sprocess class->LetProperty('name', 'my process class');

Sprocess classs->add process class($Sprocess class);

4.13.1 max_processes

The maximum number of processes that are executed in parallel
Syntax: $process_class->LetProperty('max_processes', int)
Syntax: int $process_class-> max_processes

Should more tasks have to be started than allowed by this setting, then these tasks starts would be delayed until
processes become freed. The default setting is 10.

See also <process class max processes="">_.

4.13.2 name

The process class name

Syntax: $process_class->LetProperty('name', BSTR)
Syntax: BsTR $process_class-> name

The name can only be set once and may not be changed.

See also <process class name=""> .

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API 242

4.13.3 remote_scheduler
The address of the remote JobScheduler, which is to execute a process
Syntax: $proceSS_C|aSS->LetProperty(' remote_scheduler', BSTR)

Syntax: BSTR $process_class-> remote_scheduler

Example:

$spooler->process classes->process class('my process class')->remote scheduler(
'host: 4444');

See also <process class remote scheduler=""> .

Parameters:

The address is specified in the form: " host:
portnumber”.

In addition, the IP address is returned on reading: "
hostname / ipnumber: portnumber”"

Returned value:
BSTR

The address is specified in the form: " host: portnumber”.

In addition, the IP address is returned on reading: " hostname / ipnumber: portnumber”

4.13.4 remove

Removal of the process class

Syntax: $process_class-> remove(

Example:

—_ —_ Al Al _ .
4
$spooler->process classs—->process class('my process class')->remove()

The JobScheduler delays deletion of the process class as long as tasks are still running. No new tasks will be
started before the class is deleted.

See also <process class. remove>_.

4.14 Process_classes

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl AP 243

4.14.1 add_process_class

Adds a process class to the JobScheduler

Syntax: $process_c|asss-> add_process_class(Process class pc)

4.14.2 create_process_class
Creates a new process class
Syntax: Process class_ $process_classs-> create_process_class(

Returnds a new Process class_. This class can be made added to the JobScheduler using
Process classes. add process class() ..

Returned value:
Process class_

4.14.3 process_class

Returns a process class
Syntax: _Process class_ $pI‘OCGSS_C|aSSS-> process_class(BSTR process_class name)
An exception will occur if the process class is not known.

Returned value:
Process class_

4.14.4 process_class_or_null
Returns a process class
Syntax: Process class_ $process_classs-> process_class_or_null(BSTR process_class_name)

Returned value:
Process class_

null, when the process class is not known.

4.15 Run_time - Managing Time Slots and Starting Times

See <run time>_, Order_.Schedule_.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API 244

Example:

my $order = $spooler task->order;

Repeat order daily at 15:00
Sorder->run_time->LetProperty("xml", "<run time><period single start='15:00'/><
/run_time>");

4.15.1 schedule

<schedule>

Syntax: Schedule_ $run_time-> schedule

Returned value:
Schedule_

4.15.2 xml

<run_time>

Syntax: $run_time->LetProperty('=xml', BSTR)
Discards the current setting and resets Run_time.

Parameters:
XML document as a string

4.16 Schedule - Runtime

See <schedule>_, <run time>_, Spooler. schedule_, Run time_.

Example:

$spooler->schedule('my schedule')->LetProperty("xml", "

Yo)e

4.16.1 xml
<schedule>
Syntax: $schedule->LetProperty('xml', BSTR)

Syntax: BsTR $schedule-> xml

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl AP 245

Deletes the previous setting and resets schedule.

Parameters:
XML document as a string

Returned value:
BSTR

XML document as a string

4.17 Spooler

There is only one class for this object: spooler .

4.17.1 abort_immediately

Aborts the JobScheduler immediately

Syntax: $spooler-> abort_immediately(
Stops the JobScheduler immediately. Jobs do not have the possibility of reacting.

The JobScheduler kills all tasks and the processes that were started using the Task. create subprocess()
method. The JobScheduler also kills processes for which a process ID has been stored using the Task. add pid()
method.

See <modify spooler cmd="abort immediately"> and JobScheduler Documentation.

4.17.2 abort_immediately_and_restart

Aborts the JobScheduler immediately and then restarts it.

Syntax: $spooler-> abort_immediately_and_restart(

Similar to the spooler. abort immediately() method, only that the JobScheduler restarts itself after aborting. It
reuses the command line parameters to do this.

See <modify spooler cmd="abort immediately and restart"> and JobScheduler Documentation.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl AP 246

4.17.3 add_job_chain
Syntax: $spooler-> add_job_chain(Job chain chain)

Job chain. orders recoverable =true causes the JobScheduler to load the orders for a job chain from the
database.

See spooler. create job chain() _.and <job chain>_.

4.17.4 configuration_directory

Path of the Configuration Directory with hot folders

Syntax: BSTR $spooler-> configuration_directory

<config configuration directory="..">

4.17.5 create_job_chain

Syntax: Job chain_ $spooler-> create_job_chain(

Returns a new Job chain_object. This job chain can be added to the JobScheduler using
Spooler. add job chain() afterit has been filled with jobs.

See <job chain>_.

Returned value:
Job chain_

4.17.6 create_order

Syntax: Order_ $spooler-> create_order(

Creates a new order. This order can be assigned to a job chain using the Job chain. add order() method.

Returned value:
Order_

4.17.7 create_variable_set

Syntax: variable set_ $spooler-> create_variable_set(

Returned value:

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API 247

Variable set_

4.17.8 create_xslt_stylesheet

Syntax: Xslt stylesheet_ $spooler-> create xslt stylesheet(BSTR xml (optional))

Parameters:
xml Creates an XSLT style sheet as an XML string.

Returned value:
Xslt stylesheet_

4.17.9 db_history_table_name

The name of the database table used for the job history

Syntax: BSTR $spooler-> db_history_table_name

See also Spooler.db history table name()

The factory. ini _(section[spooler], entry do history table=..) setting is overwritten by this parameter.

4.17.10 db_name

The database path

Syntax: BSTR $spooler-> db_name

The database connection string for the history. Should no value be specified here, then the files will be saved in
.csv format. See factory. ini (section] spooler], entry history file=.).

A simple file name ending in . mdb (€.g. scheduler. mdb) can also be specified here when the JobScheduler is
running on Windows. The JobScheduler then uses a Microsoft MS Access database of this name, which is located
in the protocol directory (see the option -10g-dir_). Should such a database not exist, then the JobScheduler will
create this database.

The JobScheduler automatically creates the tables necessary for this database.

The factory. ini _(section[spooler] , entry db=..) setting is overwritten by this parameter.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl AP 248

4.17.11 db_order_history_table _name

The name of the order history database table

Syntax: BSTR $spooler-> db_order_history_table_name

See also Spooler.db order history table name()

The factory. ini _(section[spooler] , entry db order history table=..) setting is overwritten by this parameter.

4.17.12 db_orders_table_name

The name of the database table used for orders

Syntax: BSTR $spooler-> db_orders_table name

See also Spooler.db orders table name()

The factory. ini _(section[spooler], entry db orders table=..) setting is overwritten by this parameter.

4.17.13 db_tasks table name

The name of the task database table

Syntax: BSTR $spooler-> db_tasks_table_name

See also Spooler.db tasks table name()

The factory. ini (section[spooler], entry db tasks table=..) setting is overwritten by this parameter.

4.17.14 db_variables_table_name

The name of the database table used by the JobScheduler for internal variables

Syntax: BSTR $spooler-> db_variables_table_name

The JobScheduler records internal counters, for example, the ID of the next free task, in this database table.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl AP 249

See also Spooler.db variables table name()

The factory. ini _(section[spooler] , entry db variables table=..) setting is overwritten by this parameter.

4.17.15 directory

The working directory of the JobScheduler on starting

Syntax: BSTR $spooler-> directory

Changes the Working Directory.

A task executed on a remote JobScheduler (<process class remote scheduler="">) returns the value for the
remote Scheduler.

The -cd_option has precedence over this parameter.

A task executed on a remote JobScheduler (<process class remote scheduler="">_) returns the value for the
remote Scheduler.

Returned value:
BSTR

The directory ends on Unix with "/" and on Windows with "\ ".

4.17.16 execute_xml

Carries out XML commands

Syntax: BSTR $spooler-> execute_xml(BSTR xml)

Example:

$spooler log->info($spooler->execute xml('<show state/>'));

Errors are returned as XML <ErRrROR> replies.

Parameters:
xml See JobScheduler Documentation.

Returned value:
BSTR

Returns the answer to a command in XML format.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API 250

4.17.17 hostname

The name of the computer on which the JobScheduler is running.

Syntax: BSTR $spooler-> hostname

4.17.18 id

The value of the command line -id= setting

Syntax: BSTR $spooler-> id

The JobScheduler only selects elements in the XML configuration whose spooler id attributes are either empty or
set to the value given here.

When the JobScheduler ID is not specified here, then the JobScheduler ignores the spooler id= XML attribute
and selects all the elements in the XML configuration.

See, for example, <config>_.

The -id_option has precedence over this parameter.

The factory. ini (section [spooler], entry id=..) setting is overwritten by this parameter.

4.17.19 include_path

Returns the command line setting -include-path=.

Syntax: BsSTR $spooler-> include_path

The directory of the files which are to be included by the <include>_element.

A task executed on a remote JobScheduler (<process class remote scheduler="">_) returns the value for the
remote Scheduler.

Environment variables (e.g. sa0ME) are replaced by this attribute (see Settings which Allow Environment Variables
to be Called).

The -include-path_option has precedence over this parameter.

The factory. ini _(section[spooler], entry include path=..) setting is overwritten by this parameter.

<config include path="..">

A task executed on a remote JobScheduler (<process class remote scheduler="">_) returns the value for the
remote Scheduler.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API 251

4.17.20 ini_path

The value of the -ini= option (the name of the factory. ini file)
Syntax: BSTR $spooler-> ini_path

A task executed on a remote JobScheduler (<process class remote scheduler="">_) returns the value for the
remote Scheduler.

See -ini_, JobScheduler Documentation

4.17.21 is_service

Syntax: Boolean $spooler-> is_service

Returned value:
Boolean

is true, when the JobScheduler is running as a service (on Windows) or as a daemon (on Unix).

4.17.22 job

Returns a job
Syntax: _Job_ $spooler-> job(BSTR job name)
An exception is returned should the job name not be known.

Returned value:
Job_

4.17.23 job_chain

Returns a job chain
Syntax: Job chain_ $spooler-> job_chain(BSTR name)
Should the name of the job chain not be known, then the JobScheduler returns an exception.

Returned value:
Job chain_

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API 252

4.17.24 job_chain_exists

Syntax: Boolean $S ooler-> job chain exists(BSTR name)
Job_« _

4.17.25 let_run_terminate_and_restart

Syntax: $spooler-> let_run_terminate_and_restart(

The JobScheduler ends all tasks (by calling the Job impl_method) as soon as all orders have been completed and
then stops itself. It will then be restarted under the same command line parameters.

See <modify spooler cmd="let run terminate and restart">_and JobScheduler Documentation.

4 .17.26 locks

Returns the locks
Syntax: _Locks_ $spooler-> locks

Returned value:
Locks_

4.17.27 log

The main log
Syntax: Log_ $spooler-> log
spooler log() _is usually used for this property.

Returned value:
Log_

4.17.28 log_dir

Protocol directory

Syntax: BSTR $spooler-> log dir

The directory in which the JobScheduler writes log files.

log dir=*stderr allows the JobScheduler to write log files to the standard output (stderr, normally the screen) .

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API

253

A task executed on a remote JobScheduler (<process class remote scheduler="">_) returns the value for the

remote Scheduler.

The -10g-dir_option has precedence over this parameter.

The factory. ini _(section[spooler] , entry 1og dir=.) setting is overwritten by this parameter.

A task executed on a remote JobScheduler (<process class remote scheduler="">_) returns the value for the

remote Scheduler.

4.17.29 param

The command line option -param=

Syntax: BSTR $spooler-> param

Free text. This parameter can be read using spooler. param.

The -param_option has precedence over this parameter.

The factory. ini _(section[spooler], entry param=..) setting is overwritten by this parameter.

4.17.30 process_classes

Returns the process classes

Syntax: Process classes_ $spooler-> process_classes

Returned value:
Process classes_

4 .17.31 schedule

Returns the schedule with the name specified or nul1
Syntax: Schedule_ $spooler-> schedule(BSTR path)

Returned value:
Schedule_

4.17.32 supervisor_client

Returns the Supervisor_client or nu11

Software- and Organisations-Service GmbH

March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API 254

Syntax: Supervisor client_ $spooler-> supervisor_client

Returned value:
Supervisor client_

4.17.33 tcp_port

Port for HTTP and TCP commands for the JobScheduler

Syntax: int $spooler-> tcp_port

The JobScheduler can accept commands via a TCP port whilst it is running. The number of this port is set here -
depending on the operating system - with a number between 2048 and 65535. The default value is 4444.

The JobScheduler operates a HTTP/HTML server on the same port, enabling it to be reached using a web browser
- e.g. via http://localhost:4444.

The JobScheduler does not respond to the tcp port=0 default setting either with TCP or HTTP protocols. This
setting can therefore be used to block a JobScheduler from being accessed - for example via TCP.

The -tcp-port_option has precedence over this parameter.

<config tcp port=".">

Returned value:
int

0, when no port is open.

4 .17 .34 terminate

The proper ending of the JobScheduler and all related tasks

Syntax: $spooler-> terminate(int timeout (optional) , Boolean restart (optional) , boolean
all schedulers (optional) , boolean continue exclusive operation (optional))

Ends all tasks (by calling the spooler close()) method and terminates the JobScheduler.

Should a time limit be specified, then the JobScheduler ends all processes still running after this limit has expired.
(Typical processes are tasks which have remained too long in a method call such as spooler process() _.)

See <modify spooler cmd="terminate"> and JobScheduler Documentation.

Parameters:

timeout The time in seconds which the JobScheduler allows for a task to end. After this time the
JobScheduler stops all processes before stopping itself. If this parameter is not set then the
JobScheduler will wait on tasks indefinitely.

restart restart=true allows the JobScheduler to restart after ending.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl AP 255

all_schedu all schedulers=true ends all the JobSchedulers belonging to a cluster (see -exclusive_). This
lers may take a minute.

continue_e continue exclusive operation=true causes another JobScheduler in the Cluster to take

xclusive o pecome active (see -exclusive).
peration

4.17.35 terminate_and_restart
Correctly terminates the JobScheduler and all tasks before restarting
Syntax: $spooler-> terminate_and_restart(int timeout (optional))

Similar to the spooler. terminate() _method, but the JobScheduler restarts itself.

See <modify spooler cmd="terminate and restart">_and JobScheduler Documentation.

Parameters:

time The time in seconds which the JobScheduler allows for a task to end. After this time the JobScheduler
out stops all processes before stopping itself. If this parameter is not set then the JobScheduler will wait on
tasks indefinitely.

4.17.36 udp_port

Port for UDP commands for the JobScheduler

Syntax: int $spooler-> udp_port

The JobScheduler can also accept UDP commands addressed to the port specified in this setting. Note that a UDP
command must fit in a message and that the JobScheduler does not answer UDP commands.

The default value of udp _port=0 does not allow the JobScheduler to open a UDP port.
The -udp-port_option has precedence over this parameter.

<config udp port="..">

Returned value:
int

0, when no port is open.

4.17.37 var

Allows access to variables defined in the JobScheduler start script

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API 256

Syntax: $Sp00|er->LetProperty('var', BSTR name, Variant)
Syntax: variant $spooler-> var(BSTR name)

The variables are used by all JobScheduler job implementations.

4.17.38 variables

The JobScheduler variables as a variable set
Syntax: variable set_ $spooler-> variables
The variables can be set in the configuration file using <config> .

Returned value:
Variable set_

4.18 Spooler_program - Debugging Jobs in Java

Starts the JobScheduler using Java, so that jobs written in Java can be debugged (e.g. using Eclipse). See
Javadoc for information about the methods.

The JobScheduler is started as a Windows application and not as a console program. Output to stderr is lost -
standard output is shown in Eclipse. -10g-dir_shows no output.

See JobScheduler Documentation.

Example:

C:\>java -Djava. library. path=.. -classpath ..\sos. spooler. jar sos.spooler. Spooler program
configuration. scheduler -log-dir=c: \tmp\scheduler

Should the location of the scheduler. dl1l not be specified in $PATH% then it may be set using

-Djava. library. path=...

4.19 Subprocess

A subprocess is a process which can be started using either Task. create subprocess() Or Subprocess. start()

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API 257

Example: my_system() - the Simple Execution of a Command

sub my system

{

Executes the command without processing the shell characters

my $cmd = shift;
my $timeout = shift;

my $subprocess = $spooler task->create subprocess();

$Ssubprocess->LetProperty("timeout", $timeout) if defined S$timeout;
$Ssubprocess->start($cmd);

$subprocess->wait for termination();

return $subprocess->exit code;

sub shell
Executes the command under the shell (UNIX only)

my $cmd = shift;
my S$timeout = shift;
my $subprocess = $spooler task->create subprocess();

$Ssubprocess->LetProperty("timeout", $timeout) if defined S$timeout;
$subprocess->start(["/bin/sh", "-c", $cmd]);
$subprocess->wait for termination();

return $subprocess->exit code;

Example:

my Ssubprocess = $spooler task->create subprocess();
Ssubprocess->environment->LetProperty("testl", "one");
Ssubprocess->environment->LetProperty("test2", "two");

$subprocess->environment->LetProperty("ignore error"; true);
Ssubprocess->start("sleep 20");

$spooler log->info("pid=" . S$subprocess->pid);
Ssubprocess->timeout(10);

$spooler log->info("wait for termination ...");
my #ok = S$subprocess->wait for termination(10);
$spooler log->info("wait for termination ok=" . ok);

if($subprocess->terminated)

{

$spooler log->info("exit code=" . S$subprocess->exit code);
$spooler log->info("termination signal=" . S$subprocess->termination signal);
}
4.19.1 close

Frees system resources

Software- and Organisations-Service GmbH March 2015

Perl API 258

Syntax: $subprocess-> close(

This method should only be called in language with a garbage collector (Java, JavaScript). In all other cases the
task ends immediately.

Should this method have been called in a language with a garbage collector, then the subprocess is no longer
usable.

4.19.2 env

Environment Variables as Variable_sets

Syntax: variable set_ $subprocess-> env

Example:

my $subprocess = $spooler task->create subprocess();
$subprocess->LetProperty('start', $subprocess->env->substitute(
'${MY HOME}/my program'));

$subprocess->wait for termination();

Returns a variable set _for the environment variables.

Initially the environment is filled by the environment variables from the calling process. Environment variables can
be removed in that they are set to "". Calling subprocess. start() hands over environment variables to the
subprocess.

Note that the names of environment variables are case sensitive on UNIX systems.

Changes made to environment variables after the start of a subprocess have no effect. This is also true for
environment variables changed by the process.

This object cannot be handed over to other objects - it is a part of the task process, whereas the majority of other
objects are part of the JobScheduler process.

Returned value:
Variable set_

4.19.3 environment

Environment variables

Syntax: $SprI‘OC€SS->LetProperty('environment', BSTR name, BSTR value)

Example:

// The following two statements have the same effect
$subprocess->LetProperty('environment', 'my variable', 'my value')
$subprocess->env->LetProperty('value', 'my variable', 'my value')

Software- and Organisations-Service GmbH March 2015

Perl API 259

Variables set here are handed over to a new subprocess together with any other environment variables belonging
to the process.

Note that the names of environment variables are case sensitive on UNIX systems.

See also subprocess. env._.

4.19.4 exit_code

Syntax: int $subprocess-> exit_code

Is only called after subprocess. terminated == true.

4.19.5 ignore_error

Prevents that a job is stopped, should exit code ! = 0.

Syntax: $SubproceSS->LetProperty('ignore_error‘, Boolean)
Syntax: Boolean $subprocess-> ignore_error

Prevents a job from being stopped, when at the end of a task the subprocess ends with subprocess. exit code! =
0.

Should a task not wait for the end of a subprocess with the subprocess. wait for termination_method, then the
JobScheduler waits at the end of the task for the end of any subprocesses. In this case the job is stopped with an
error when a subprocess ends with Subprocess. exit code!= 0.

This may be avoided using ignore error.

4.19.6 ignore_signal

Prevents a job from being stopped when the task is stopped with a UNIX signal.
Syntax: $subprocess->LetProperty('ignore_signal', int)

Syntax: int $subprocess-> ignore signal

This property does not work on Windows systems, as this system does not support signals.

4.19.7 kill

Stops a subprocess

Syntax: $SprFOC€SS-> kill(int signal (optional))

Software- and Organisations-Service GmbH March 2015

Perl API 260

Parameters:

signal Only on UNIX systems: The ki11() signal. O is interpreted here as 9 (s1ckILL, immediate ending).

4.19.8 own_process_group

Subprocesses as a Process Group

Syntax: $subprocess->LetProperty('own_process_group' , Boolean)
Syntax: Boolean $subprocess-> own_process_group

Only available for UNIX systems.

The default setting can be made using factory.ini (section[spooler], entry
subprocess. own process group:...).

own_process_group allows a subprocess to run in its own process group, by executing the setpgid(0, 0) system
call. When the JobScheduler then stops the subprocess, then it stops the complete process group.

4.19.9 pid

Process identification

Syntax: int $subprocess-> pid

4.19.10 priority
Process Priority
Syntax: $SprI‘OCGSS->LetProperty('priority', int)

Syntax: int $subprocess-> priority

Example:

$spooler task->LetProperty('priority', +5); // UNIX: reduce the priority a little

UNIX: The highest priority is -20, the lowest 20. The priority of a task can generally only be reduced and not
increased.

The following priority classes are available on Windows systems 4 "idle", 6 "below normal", 8 "normal", 10
"above normal"™ and 13 "high" (other values are rounded down). See also Task. priority class_.

Note that an error does not occur, should it not be possible to set the priority of a task.

Note also that a process with a higher priority can block a computer.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API 261

The priority of a task can be set independently of the operating system with subprocess. priority class_. See
also Task. priority..

4.19.11 priority_class
Priority Class
Syntax: $subprocess->LetProperty('priority class', BSTR)

Syntax: BSTR $subprocess-> priority_class

Example:

$subprocess->LetProperty('priority class', 'below normal');

The following priority classes can be used to set priorities on Windows and UNIX Systems:

Priority Class Windows UNIX
"idle" 4 16
"below normal" 6 6
"normal" 8 0
"above normal" 10 -6
"high" 13 -16

Note that when it is not possible to set a priority for a task - for example, because of inappropriate permissions -
then this must not cause an error. On the other hand, an error will occur should it be attempted to allocate a task a
priority class not listed here.

Note also that a higher priority process can block a computer.

See also subprocess. priority_, Task. priority class_and Microsoft® Windows® Scheduling Priorities.

4.19.12 start

Starts the process
Syntax: $subprocess-> start(BSTR| BSTR command line)
Windows immediately detects whether the program cannot be executed. In this case the method returns an error.

On UNIX systems the subprocess. exit code_property is set to 99. Before this is done, the end of the process
must be waited on with subprocess. wait for termination() ..

Shell operators such as | , ss and > are not interpreted. The /bin/sh or c: \windows\system32\cmd. exe programs
must be used to do this. (Note that the actual paths will depend on the installation.)

This process is started on UNIX systems using execvp() and with CreateProcess() on Windows systems.

Software- and Organisations-Service GmbH March 2015

http://msdn.microsoft.com/library/en-us/dllproc/base/scheduling_priorities.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/createprocess.asp

Perl API 262

4.19.13 terminated

Syntax: Boolean $subprocess-> terminated

Verifies that a process has ended. Should the process in question have ended, then the subprocess. exit code
and subprocess. termination signal_classes may be called.

4.19.14 termination_signal
Signal with which a process (only on UNIX systems) ends
Syntax: int $subprocess-> termination_signal

Is onIy called, after Subprocess. terminated == true.

4.19.15 timeout

Time limit for a subprocess
Syntax: $SprI‘OCGSS->LetProperty('timeout', double seconds)
After the time allowed, the JobScheduler stops the subprocess (UNIX: with sTGKILL).

This time limit does not apply to processes running on remote computers with <process class
remote scheduler="">_.

4.19.16 wait_for_termination

Syntax: $subprocess-> wait_for termination(
Syntax: Boolean $subprocess-> wait_for termination(double seconds)

Parameters:

second Waiting time. Should this parameter not be specified, then the call will take place after the subprocess
S has ended.

Returned value:
Boolean

true, after a subprocess has ended.
false, should the subprocess continue beyond the waiting time.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API 263

4.20 Supervisor_client

This object is returned by Spooler. supervisor client..

Example:

my $supervisor hostname = $spooler->supervisor client->hostname;

4.20.1 hostnhame

The name or IPnumber of the host computer on which the suupervising JobScheduler is running
Syntax: BSTR $supervisor_client-> hostname

See also <config supervisor="">_.

4.20.2 tcp_port

the TCP port of the supervisor
Syntax: int $supervisor_client-> tcp_port

See also <config supervisor="">_.

4 .21 Task

A task is an instance of a job which is currently running.

A task can either be waiting in a job queue or being carried out.

4.21.1 add_pid

Makes an independent, temporary process known to the JobScheduler
Syntax: $spooler_task-> add_pid(int pid, BSTR| double| int timeout (optional))

This call is used to restrict the time allowed for processes that have been launched by a task. The JobScheduler
ends all independent processes still running at the end of a task.

A log entry is made each time the JobScheduler stops a process. This does not affect the state of a task.
The <kill task> method stops all processes for which the add pid() method has been called.

A process group ID can be handed over on Unix systems as a negative pid. ki11 then stops the complete process
group.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API 264

This time limit does not apply for processes being run on remote computers with <process class
remote scheduler="">_.

4.21.2 call_me_again_when_locks_available

Repeats spooler_open() or spooler_process() as soon as locks become available
Syntax: $spooler_task-> call me again when locks available(

Causes the JobScheduler to repeat a call of spooler open() _Or spooler process() _, after an unsuccessful
Task. try hold lock() Or Task.try hold lock non exclusive() _as soon as the locks required are available.
The JobScheduler then repeats the call once it holds the locks, so that the first call (i.e. spooler open() _) will be
successful.

After this call, true/false values returned by spooler open() _Of spooler process()_has no effect. The
JobScheduler leaves the state of the Task. order_unchanged.

4.21.3 changed_directories

The directory in which the change which started a task occurred
Syntax: BSTR $spooler_task-> changed_directories

See Job. start when directory changed() , Task. trigger files_.

Returned value:
BSTR

Directory names are to be separated using a semicolon.

»» should no change have occurred in a directory.

4.21.4 create_subprocess

Starts a monitored subprocess

Syntax: _subprocess__ $spooler_task-> create_subprocess(BSTR| BSTR filename and arguments
(optional))

Returned value:
Subprocess_

4.21.5 delay_spooler_process

Delays the next call of spooler process()

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl AP 265

Syntax: $spooler_task->LetProperty('delay spooler process', BSTR| double| int seconds or hhmm ss
)

Only functions in spooler process() ..

4216 end

Ends a task
Syntax: $spooler_task-> end(

The JobScheduler no longer calls the spooler process() _method. Instead the spooler close() _method is
called.

This method call can be used at the end of a task to trigger sending a task log. See Log_.

4.21.7 error

Sets an error and stops the current job
Syntax: $spooler_task->LetProperty('error', BSTR)
Syntax: Error_ $spooler_task-> error

This method call returns the last error which has occurred with the current task. Should no error have occurred, an
Error_object is returned, with the is _error property setto false.

An error message can also be written in the task log file using Log. error()

Returned value:
BSTR Exrror_

4.21.8 exit_code

Exit-Code
Syntax: $spooler_task->LetProperty('exit_code', int)

Syntax: int $spooler_task-> exit_code

Example:
$spooler_log—>error('This call of spooler log.error() sets the exit code to 1');
$spooler task->LetProperty('exit code', 0); # Reset the exit code

The initial exit-code value is 0 - this is changed to 1 should an error occur. Note that an error is defined here as
occurring when the JobScheduler writes a line in the task log containing "[ERROR] "

. calling the Log. error() method;

Software- and Organisations-Service GmbH March 2015

Perl API 266

. setting the Task. error_property;
. the script returns an exception.

The job can then set the Task. exit code_property - e.g. in the spooler on error() method.

The exit code resulting from an operating system process executing a task is not relevant here and, in contrast to
jobs with <process> Or <script language="shell">_, is not automatically handed over to this property.

The exit code determines the commands to be subsequently carried out. See <job> <commands on exit code=""
> for more information.

The exit codes have no influence for API jobs on whether or not a job is stopped (a task error message causes jobs
to be stopped).

4.21.9 history_field

A field in the task history

Syntax: $SpOCﬂe[jaSk->LetProperty('history field', BSTR name, Variant value)

Example:

$spooler task->LetProperty('history field', 'extra', 4711);

The database table (see factory. ini _(section [spooler], entry db history table=..)) must have a column with
this name and have been declared in the factory. ini (section] job] , entry history columns=..) file.

4.21.10id

The task identifier
Syntax: int $spooler task-> id

The unique numerical identifier of every task run by a JobScheduler.

4.21.11 job

The job which a task belongs to
Syntax: Job_ $spooler_task-> job

Returned value:
Job_

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API 267

4.21.12 order

The current order

Syntax: order_ $spooler_task-> order

Example:

my $order = $spooler task->order();

$spooler log->info('order.id=' . Sorder->id . ', order.title=' . Sorder->title);

Returned value:
Order_

null, should no order exist.

4.21.13 params

The task parameters

Syntax: variable set_ $spooler_task-> params

Example:

my Svalue = $spooler task->params->var("parameter3");
my Sparameters = $spooler task->params;

my S$valuel = $parameters->var("parameterl");

my $Svalue2 = $parameters->var("parameter2");

A task can have parameters. These parameters can be set using:

. <params>_in the <job>_element in the configuration file;
. Job. start() _and
. <start job>_..

Returned value:
Variable set_

!'= null

4.21.14 priority
Priority of the Current Task
Syntax: $spooler_task->LetProperty('priority', int)

Syntax: int $spooler_task-> priority

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API

268

Example:

$spooler task->LetProperty(' priority', +5); // Unix: reduce the priority a little

Unix: The highest priority is -20, the lowest 20. The priority of a task can generally only be reduced and not

increased.

The following priority classes are available on Windows systems 4 "idle", 6 "below normal", 8 "normal",

"above normal" and 13 "high" (other values are rounded down). See also Task. priority class_.

Note that an error does not occur, should it not be possible to set the priority of a task.
Note also that a process with a higher priority can block a computer.

The priority of a task can be set independently of the operating system with Task. priority class_.

4.21.15 priority_class
Priority Class of the Current Class
Syntax: $spooler_task->LetProperty('priority class', BSTR)

Syntax: BSTR $spooler_task-> priority class

10

Example:

$spooler task->LetProperty('priority class', 'below normal');

The following priority classes can be used to set priorities on Windows and Unix Systems:

Priority Class Windows Unix
"idle" 4 16
"below normal" 6 6
"normal" 8 0
"above normal" 10 -6
"high" 13 -16

Note that an error will occur should it be attempted to allocate a task a priority class not listed here.
Note also that a higher priority process can block a computer.

See also Task. priority_, Subprocess. priority class_and Microsoft® Windows® Scheduling Priorities.

4.21.16 remove_pid

The opposite to add_pid()

Syntax: $spooler_task-> remove_pid(int pid)

Software- and Organisations-Service GmbH March 2015

http://msdn.microsoft.com/library/en-us/dllproc/base/scheduling_priorities.asp

Perl API

269

An error does not occur when the pid has not been added using Task .

See Task. add pid() _.

4.21.17 repeat

Restarts a task after the specified time

Syntax: $spooler_task->LetProperty('repeat', double)

(This method actually belongs to the Job_class and has nothing to do with the task currently being processed.)

Should there be no task belonging to the current job running after the time specified has expired, then the
JobScheduler starts a new task. Note that the <run time>_element is considered here, and that the <period

repeat="">_attribute may be temporarily ignored.

Job. delay after error_has priority, should a task return an error.

4.21.18 stderr_path

The path to the file in which stderr task output is captured
Syntax: BSTR $spooler_task-> stderr_path
Text in stderr is currently interpreted in the ISO-8859-1 character set.

Returned value:
BSTR

»n should a task not run in a separate <process classes>_process.

4.21.19 stderr_text

Text written to stderr up to this point by the process that was started by the task.
Syntax: BSTR $spooler_task-> stderr_text
Text in stderr is currently interpreted in the ISO-8859-1 character set.

Returned value:
BSTR

»» should the task not have been started in a separate process <process classes>..

Software- and Organisations-Service GmbH

March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API 270

4.21.20 stdout_path

The path of the file in which stdout task output is captured
Syntax: BSTR $spooler_task-> stdout_path
Text in stdout is currently interpreted in the ISO-8859-1 character set.

Returned value:
BSTR

nm should a task not run in a separate <process classes>_Process.

4.21.21 stdout_text

Text written to stdout up to this point by the process that was started by the task.
Syntax: BSTR $spooler_task-> stdout_text
Text in stdout is currently interpreted in the ISO-8859-1 character set.

Returned value:
BSTR

»» should a task not run in a separate <process classes>_process.

4.21.22 trigger_files

File paths in folders monitored with regex
Syntax: BSTR $spooler_task-> trigger files

Returns the file paths from monitored directories (_Job.start when directory changed()_oOr <
start when directory changed>_) at the time a task is started. Only applies to directories for which a regular
expression has been defined (regex).

The paths are taken from the addresses defined in Job.start when directory changed()_oOr <
start when directory changed>_and combined with the file names.

The non-API <process>_and <script language="shell">_jobs make the content of Task. trigger files
available to the SCHEDULER TASK TRIGGER FILES environment variable.

See Job. start when directory changed() _and Task. changed directories() _.

Returned value:
BSTR

The file paths are separated by semicolons.

v otherwise

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API 271

4.21.23 try_hold_lock

Try to hold a lock

Syntax: boolean $spooler_task-> try hold lock(BSTR lock path)

Example: in javascript

function spooler process()

{

var result = false;
if(spooler task.try hold lock("Georgien") &&
spooler task. try hold lock non exlusive("Venezuela"))

{

// Task i1s holding the two locks. Insert processing code here.
result = ...

}

else

{

spooler task.call me again when locks available();

}

return result;

try lock hold() attempts to retain the lock specified (_Lock_), and can be called in:

. spooler open() _: the lock is held for the task being carried out and will be freed after the task has been
completed,

. spooler process() _: the lock is only held for the job step currently being carried out and will be given up
after the step has been completed - i.e. after leaving spooler process() .

When the lock is not available and calling this method returns false then the JobScheduler can be instructed to
either:

. repeat the spooler open() _Or spooler process()_calls as soon as the locks are available using
Task.call me again when locks available() _Or

. end spooler open() OF spooler process() With false, without use of the above-mentioned call, (but with
the expected effect),

. throw a SCHEDULER-469 _warning. This applies for t rue, which is interpreted as an error.

See also <lock. use>_.

Returned value:
boolean

true, when the task retains the lock.

4.21.24 try_hold_lock_non_exclusive
Tries to acquire a non-exclusive lock
Syntax: boolean $spooler_task-> try hold lock_non_exclusive(BSTR lock path)

The same prerequisites apply as to Task. try hold lock() ..

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm?help_URL=scheduler.messages.htm#message_SCHEDULER-469
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API 272

See <lock. use exclusive="no">_.

Returned value:
boolean

true, if the task successfully acquired the lock.

4.21.25 web_service

The Web Service which a task has been allocated to.
Syntax: ieb service_ $spooler_task-> web_service
This property causes an exception when a task has not been allocated to a Web Service.

See also Task. web service or null_.

Returned value:
Web service_

4.21.26 web_service_or_null
The Web Service to which a task has been allocated, or nul1.
Syntax: Web service_ $spooler_task-> web_service_or_null

See also Task. web service_.

Returned value:
Web service_

4.22 Variable_set - A Variable_set may be used to pass parameters

Variable_set is used for the JobScheduler variables and task parameters. A new Variable_set is created using
Spooler. create variable set() ..

Variable names are case independent.

The value of a variable is known as a variant in the COM interface (JavaScript, VBScript, Perl). Because variables
are usually written in the JobScheduler database, only variant types which can be converted into strings should be
used here.

The value of a variable in Java is a string. Therefore, a string value is returned when reading this variable, when it
is set as a variant in the COM interface. Null and Empty are returned as null. An error is caused should the value
of a variant not be convertible.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API

273

4.22 .1 count

The number of variables

Syntax: int $variable_set-> count

4.22.2 merge

Merges with values from another Variable_set
Syntax: $variable_set-> merge(Variable set vs)

Variables with the same name are overwritten.

4.22.3 names

The separation of variable names by semicolons

Syntax: BsTR $variable_set-> names

Example:

my Svariable set = $spooler->create variable set();
Sspooler log->info('"' . Svariable set->names . '"'

Svariable set->("variable 1", "edno");

Svariable set->("variable 2", "dwa";

Sspooler log->info('"' . Svariable set->names . '"'

"variable 1;variable 2"

)

$ ==> "nn

==

my @names = $variable_set—>names—>split("N
foreach my Sname(@names) { $spooler log->info($name . " U Svariable set($name)
)i

Returned value:
BSTR
All variable names should be separated by semicolons.
4.22 .4 set_var
Sets a variable
Syntax: $variable_set-> set_var(BSTR name, Variant value)
Software- and Organisations-Service GmbH March 2015

Perl API 274

4 .22 .5 substitute

Replaces $-Variables in a String

Syntax: BSTR $variable_set-> substitute(BSTR sustitution string)

Example: in javascript

subprocess. start(subprocess. env. substitute("${MY HOME}/my program"));

In the example below, the subprocess. env_method is used.

References in the string in the form $ name and ${ name} are replaced by variables.

Returned value:
BSTR

The string containing the substituted $ variables.

4.22.6 value

A variable
Syntax: $variable_set->LetProperty('value', BSTR name, Variant value)
Syntax: variant $variable _set-> value(BSTR name)

Parameters:

name

value empty, should a variable not exist.

Returned value:
Variant

empty, should a variable not exist.

4.22.7 var

A variable
Syntax: $Variab|e_set->LetProperty('wvar', BSTR name, Variant value)
Syntax: variant $variable_set-> var(BSTR name)

Use the variable set. value_, which is available in all languages.

Parameters:

name

value empty, should a variable not exist.

Software- and Organisations-Service GmbH March 2015

Perl API 275

Returned value:
Variant

empty, should a variable not exist.

4.22.8 xml
Variable set as an XML document
Syntax: $variable_set->LetProperty('xml', BSTR)

Syntax: BsTR $variable_set-> xml

Example:
my $variable set = S$spooler->create variable set();
$spooler log->info($variable set->xml); // Liefert <?xml version='1l.0'?><

sos. spooler. variable set/>

my $variable set->LetProperty('=xml', '<?xml version='1l.0'?>'
' <params>'
' <param name='surname' value='Meier' />'
' <param name='christian name' value='Hans'/>'

' </params>';
$spooler log->info(S$variable set->xml);
$spooler log->info('nachname=' . Svariable set->value('surname'));
$spooler log->info('vorname =' . Svariable set->value('christian name'));

See <sos. spooler. variable set>_ , <params>_.

Parameters:

XML document as a string. Returns <

sos. spooler. variable set>_. When setting this
property to an XML value, then the name of the root
element is ignored; <params>_oOr <

sos. spooler. variable set> may be returned.

Returned value:
BSTR

XML document as a string. Returns <sos. spooler. variable set>_. When setting this property to an XML value,
then the name of the root element is ignored; <params>_0Or <sos. spooler. variable set> may be returned.

4.23 Web_service

See also <web service>

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API

276

4.23.1 forward_xslt_stylesheet path

Path to the forwarding XSLT stylesheets
Syntax: BSTR $web_service-> forward xslt_stylesheet_path

See also <web service forward xslt stylesheet="">

4.23.2 name

The Name of the JobScheduler Web Service
Syntax: BsTR $web_service-> name

See also <web service name="">

4.23.3 params

Freely definable parameters

Syntax: variable set_ $web_service-> params

The Web Services parameters can be set using the <web service>_element.

Returned value:
Variable set_

4.24 Web_service_operation

See also <web service>

4.24.1 peer_hostname

Peer (Remote) Host Name

Syntax: BSTR $web_service_operation-> peer hostname
Returned value:

BSTR

»» should it not be possible to determine the name.

Software- and Organisations-Service GmbH

March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API 277

4.24.2 peer_ip

Peer (Remote) IP Address

Syntax: BSTR $web_service_operation-> peer_ip

4.24.3 request

Requests

Syntax: Web service request_ $web_service_operation-> request

Returned value:
Web service request_

4.24 .4 response

Answers

Syntax: Web service response_ $web_service operation-> response

Returned value:
Web service response_

4.24.5 web_service

Syntax: Web service_ $web_service_operation-> web service

Returned value:
Web service_

4.25 Web_service_request

See Web service operation..

4.25.1 binary_content

Payload as a Byte Array (Java only)

Software- and Organisations-Service GmbH March 2015

Perl API

278

Syntax: $web_service_request-> binary content

This property is only available under Java.

The ("Content-Type") header field is used to inform the client how binary content is to be interpreted (see

HTTP/1.1 14.17 Content-Type) and eb service request.charset name).

4.25.2 charset_name

Character Set

Syntax: BSTR $web_service_request-> charset name

Example:

my Srequest = $spooler task->order->web service operation->request;
$spooler log->info(Srequest->header('Content-Type')); # ==> text/xml;
charset=utf-8

$spooler log->info(Srequest->content type); # ==> text/xml
$spooler log->info(Srequest->charset name); # ==> utf-8

Returns the charset= parameter from the content-Type: header entry.

4.25.3 content_type

Content Type (without parameters)
Syntax: BSTR $web_service_request-> content_type

Returns the content-Type: header entry, without parameters - e.g. "text/plain".

4.25.4 header

Header Entries

Syntax: BsTR $web_service_request-> header(BSTR name)

Example:

request->header(' Content-Type'));

$spooler log->info('Content-Type: ' . S$spooler task->order->web service operation->

Parameters:
name Case is not relevant.

Returned value:

Software- and Organisations-Service GmbH

March 2015

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17

Perl API

279

BSTR

Returns " in event of an unrecognized entry.

4.25.5 string_content

Payload as Text

Syntax: BSTR $web_service_request-> string_content

The character set to be used is taken from the charset parameter in the headers("Content-Type") (see
HTTP/1.1 14.17 Content-Type). ISO-8859-1 will be used as default, should this parameter not be specified.

The following character sets are recognized:
. ISO-8859-1

. UTF-8 (only on Windows systems and restricted to the ISO-8859-1 characters)

See also Web service request. binary content._.

4.25.6 url

Uniform Resource Locator
Syntax: BsTR $web_service_request-> url

url = "http: //" + header("Host") + url_path

4.26 Web_service_response

Note that the binary content property is only available under Java.

See also <web service>

4.26.1 charset_name

Character set

Syntax: BSTR $web_service_response-> charset_name

Software- and Organisations-Service GmbH

March 2015

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

Perl API

280

Example:

my $request = $spooler task->order->web service operation->request;

$spooler log->info(S$request->header('Content-Type')); // ==> text/xml;
charset=utf-8

$spooler log->info(S$request->content type); // ==> text/xml
$spooler log->info(S$request->charset name); // ==> utf-8

Reads the charset= parameter from the content-Type: header entry.

4.26.2 content_type

Content-Type (without parameters)

Syntax: BSTR $web_service_response-> content_type

Reads the content-Type: header without any of the other associated parameters such as charset=.

4.26.3 header
Header Entries
Syntax: $web_service response->LetProperty('header', BSTR value, BSTR name)

Syntax: BsTR $web_service_response-> header(BSTR name)

Example:

response->header('Content-Type'));

$spooler log->info('Content-Type: ' . S$spooler task->order->web service operation->

Parameters:
value " js used for unknown entries.
name The case in which entries are written is not relevant here.

Returned value:
BSTR

nv is used for unknown entries.

4.26.4 send

Sends a Reply

Syntax: $web_service_response-> send

Software- and Organisations-Service GmbH

March 2015

Perl API 281

4.26.5 status_code

HTTP Status Code
Syntax: $web_service_response->LetProperty('status_code', int)

The default setting is 200 (OK).

4.26.6 string_content

Text payloads

Syntax: $web_service_response->LetProperty('string_content', BSTR text)

Example:

my $response = $spooler task->order->web service operation->response;
Sresponse->LetProperty('content type', 'text/plain');
Sresponse->LetProperty('charset name', 'iso-8859-1');
Sresponse->LetProperty('string content', 'This is the answer');

Sresponse->send() ;

The header("Content-Type") must first of all contain a charset parameter such as:
header("Content-Type") = "text/plain; charset=iso-8859-1";

Text is coded as specified in the charset parameter. ISO-8859-1 will be used as the default value, should this
parameter not be specified.

SeeWeb service request. string content for the character sets which are allowed.

See Web service response.charset name..

4.27 Xslt_stylesheet

An XSLT style sheet contains the instructions for the transformation of an XML document.

The XSLT processor is implemented with libxsilt .

4.27.1 apply_xmi

Applies a style sheet to an XML document.

Syntax: BSTR $x-> apply_xml(BSTR xml)

Software- and Organisations-Service GmbH March 2015

http://xmlsoft.org/XSLT/

Perl API 282

4.27.2 close

Frees the style sheet resources

Syntax: $x-> close(

4.27.3 load_file

Loads the style sheet from an XML file

Syntax: $x-> load file(BSTR path)

4.27.4 load_xml

Loads the style sheet from an XML document

Syntax: $x-> load_xml(BSTR xml)

Software- and Organisations-Service GmbH March 2015

VBScript API 283

5 VBScript API

The following classes are available for VBScript:

5.1 Error

5.1.1 code

The error code

Syntax: Sstring error. code

5.1.2 is_error

true, should an error have occurred

Syntax: Boolean error. is_error

5.1.3 text

The error text (with error code)

Syntax: Sstring error. text

5.2 Job

A task can either be waiting in the order queue or be running.

5.2.1 clear_delay_after_error

Resets all delays which have previously been set using delay after error

Syntax: spooler_job. clear delay after error ()

5.2.2 clear_when_directory_changed

Resets directory notification for all directories which have previously been set using
start when directory changed()

Software- and Organisations-Service GmbH March 2015

VBScript API 284

Syntax: spooler_job. clear when_directory changed ()

5.2.3 configuration_directory
Directory for the job configuration file should dynamic configuration from hot folders be used
Syntax: string spooler_job. configuration_directory

»» when a job does not come from a configuration directory.

5.2.4 delay_after_error

Delays the restart of a job in case of an error

Syntax: spooler_job. delay after_error (1Integer error steps) = Doublel|lnteger|String
seconds or hhmm ss

Example: in javascript

spooler job.delay after error(2) = 10; // A 10 second delay after the 2nd
consecutive error

spooler job.delay after error(5) = "00:01"; // One minute delay after the 5th
consecutive error

spooler job.delay after error(10) = "24:00"; // A delay of one day after the
10th consecutive error

spooler job.delay after error(20) = "STOP"; // The Job is stopped after the

20th consecutive error

Should a (first) error occur whilst a job is being run, the JobScheduler will restart the job immediately.
However, after between two and four consecutive errors, the JobScheduler will wait 10 seconds before restarting the
job;

After between five and nine consecutive errors, the job will be restarted after a delay of one minute; After between ten
and nineteen errors, the delay is 24 hours.

The job is stopped after the twentieth consecutive error.

A delay can be specified, should a particular number of errors occur in series. In this case the job will be terminated
and then restarted after the time specified.

This method call can be repeated for differing numbers of errors. A different delay can be specified for each new
method call.

It is possible to set the value of the seconds _or hhmm ss parameter to "sTop" in order to restrict the number of
(unsuccessful) repetitions of a job. The job then is stopped when the number of consecutive errors specified is
reached.

A good position for this call is spooler init() ..

See <delay after error>..

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 285

Parameters:

error_steps The number of consecutive errors required to initiate the delay

seconds_or_hhmm_ss The delay after which the job will be rerun

5.2.5 delay_order_after_setback
Delays after an order is setback

Syntax: spooler_job. delay order_ after_setback (Integer setback count) = Double|Integer|String
seconds or hhmm ss

Example: in javascript

spooler job. delay order after setback(1) = 60; // for the 1lst and 2nd
consecutive setbacks of an order:

// delay the order 60s.
spooler job. delay order after setback(3) = "01:00"; // After the 3rd consecutive

setback of an order,
// the order will be delayed an hour.

spooler job. max order setbacks = 5; // The 5th setback sets the order
to the error state

A job can delay an order which is currently being carried out with order. setback() _. The order is then positioned
at the rear of the order queue for that job and carried out after the specified time limit.

The number of consecutively occurring setbacks for an order is counted. The delay set after a setback can be
changed using delay order after setback in the event of consecutively occurring setbacks.

See
<delay order after setback>_,

Order. setback() _,

Job. max order setbacks,_,

Job chain. add job() _,

Job. delay after error() ..

Parameters:

setback _cou The number of consecutive errors and therefore setbacks for a job. The setback delay can be
nt varied according to this parameter.

seconds_or_ Time limit for the setback of the order. After expiry of the time limit, the order is reprocessed in the
hhmm_ss same job.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 286

5.2.6 folder_path
The directory in which the job is to be found.
Syntax: string spooler_job. folder_path

»r when the job does come from the local (<config configuration directory="">) configuration file.

Returns the job part relative to the live directory. The path is to start with a slash ("/") and all path components are
to be separated by slashes.

Examples:

. "/somewhere/excel" will be returned for the
c: \scheduler\config\live\somewhere\excel\sample. job. xml job;

. n /" returned for the c: \scheduler\config\live\sample. xml job and

. " (an empty string) returned for a job outside the live directory.

5.2.7 include_path

Value of the -include-path= option
Syntax: string spooler_job. include_path

See -include-path_.

5.2.8 max_order_setbacks

Limits the number of setbacks for an order
Syntax: spooler_job. max_order_setbacks =Integer

An order state is set to "error" (see Job chain node. error state_) when it is set back more than the number of
times specified here (see order. setback()).

See Job. delay order after setback. and<delay order after setback is maximum="yes">_.

5.2.9 name
The job path beginning without a backslash
Syntax: string spooler_job. name

See <job name="">_.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 287

5.2.10 order_queue

The job order queue

Syntax: Order queue_ spooler_job. order_queue

Example: in javascript

spooler log.info('order=' + (spooler job.order queue ? "yes" : "no"));

Every job order (<job order="yes">_) has an order queue. This queue is filled by the job chain to which the job
belongs.

See Job chain. add order() _, and Job chain. add job() _.

Returned value:
Order queue_

null, should the job have no queue (for <job order="no">).

5.2.11 process_class

The process class
Syntax: Process class_ spooler_job. process class

See <job process class="">_.

Returned value:
Process class_

5.2.12 remove

Removes a job
Syntax: spooler_job. remove ()

The job is stopped - i.e. current tasks are terminated and no new ones are started. The job will be removed as soon
as no more tasks are running.

Tasks queuing are ignored.
When no job task is running, the remove() function deletes the job immediately.

Job orders (<job order="yes">_) cannot be removed.

See <modify job cmd="remove">_ .

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 288

5.2.13 start

Creates a new task and places it in the task queue

Syntax: _Task_ spooler_job. start (Variable set variables (optional))

Example:
spooler. job("job a").start

Dim parameters

Set parameters = spooler.create variable set()
parameters. var("my parameter") = "my value"
parameters. var("other parameter") = "other value"
spooler. job("job a").start(parameters)

The parameters are available to the Task. params_task. Two parameters are particularly relevant here:

"spooler tas |[gives the task a name which then appears in the status display, e.g. in the web interface.
k name"

"spooler sta |[specifies a time in seconds (real number), after which the task is to start. The JobScheduler <
rt_after” run_time>_is ignored in this case.

See spooler. create variable set() _, Spooler. job_, Variable set. value_.

Returned value:
Task_

5.2.14 start_when_directory_changed

Monitors a directory and starts a task should a natification of a change be received

Syntax: spooler_job. start_when_directory_changed (String directory path, String
filename pattern (optional))

Example: in javascript
spooler job.start when directory changed("c:/tmp");

// only relevant for files whose names do not end in "~".
spooler job.start when directory changed("c:/tmp", "~.*["~]1$");

Should there not be a task belonging to this job running and a notification be received that a change in the directory
being monitored has occurred (that a file has been added, changed or deleted), then this change can be used to
prompt the JobScheduler to start a task if the current time falls within that allowed by the <run time> parameter.

This method can be called a more than once in order to allow the monitoring of a number of directories. A repeat
call can also be made to a directory in order to reactivate monitoring - if, for example, it has not been possible to
access the directory.

This method call can be coded in the JobScheduler start script or in the spooler init() _method. In the latter
case, the job must have been started at least once in order for the method call to be carried out. The <run time
once="yes">_setting should be used for this.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 289

The job should be regularly <run time repeat=""> restarted and <delay after error> Set.

The same setting can be made in the XML configuration using the <start when directory changed>_element.

Parameters:
directory_path the address of the directory being monitored

filename _patte restricts monitoring to files whose names correspond with the regular expression used.
rn

5.2.15 state_text

Free text for the job state

Syntax: spooler_job. state_text =String

Example: in javascript

spooler job.state text = "Step C succeeded";

The text will be shown in the HTML interface.

5.2.16 title

The job title

Syntax: string spooler_job. title

Example: in javascript

spooler log.info("Job title=" + spooler job. title);

See <job title="">_,

5.2.17 wake

Causes a task to be started
Syntax: spooler_job. wake ()
Starts a task, should the job have the pending or stopped states.

See Job. start()

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 290

5.3 Job_chain - job chains for order processing

A job chain is a series of jobs (job chain nodes). Orders ((order_) proceed along these chains.

Every position in a job chain is assigned a state and a job. When an order is added to the job chain, it is enqueued
by the JobScheduler according to the state of the order. The job assigned to this position then carries out the order.

Additionally, each position in a job chain has a successor state and an error state. The JobScheduler changes the
state of an order after each job in the job chain has been processed. Should the job step return
(spooler process) true,then the JobScheduler sets the succeeding state; otherwise it sets the error state. The
order then moves to another position in the job chain as defined by the new state. However, this does not apply
when the state is changed during execution with order. state_.

A job chain is created using Spooler.create job chain() _; it is filled using Job chain. add job() _and

Job chain. add end state() _and finally made available with Spooler. add job chain()

Every node is allocated a unique state. Therefore either Job chain. add job() Or Job chain. add end state()
must be called once for every state.

Example: in javascript

var my job chain = spooler.create job chain();
my job chain.name = "JobChain";

my job chain.add job("job 100", 100, 200, 999)
my job chain.add job("job 200", 200, 1000, 999)
my job chain.add end state(999);

my job chain. add end state(1000);

spooler. add job chain(my job chain);

’
’

5.3.1 add_end_state

Adds the end state to a job chain
Syntax: job_chain. add_end_state (Variant state)

This state is not assigned a job. An order that reaches the final state has completed the job chain and will be
removed from the chain.

5.3.2 add_job

Adds a job to a job chain

Syntax: job_chain. add_job (String job name, Variant input state, Variant output state, Variant
error state)

5.3.3 add_or _replace_order

Adds an order to a job chain and replaces any existing order having the same identifier

Software- and Organisations-Service GmbH March 2015

VBScript API 291

Syntax: job_chain. add_or_replace_order (Order order)

Should the job chain already contain an order with the same identifier, then this order will be replaced. More
accurately: the original order will be deleted and the new one added to the job chain.

As long as an existing order having the same identifier as the new order is being carried out, both orders will be
present. However, the original order will have already been deleted from the job chain and database; it is only
available to the current task and will completely disappear after it has been completed.

In this case the JobScheduler will wait until the original order has been completed before starting the new one.

See Job chain. add order() _and Order. remove from Jjob chain()

5.3.4 add_order

Adds an order to a job chain

Syntax: Order_ job_chain. add_order (Order | String order or payload)

Should an order already exist on another job chain, then the JobScheduler removes the order from this other chain.
An order is allocated to the job order queue corresponding to its state, and positioned according to its priority.

The job chain must be specified for the JobScheduler using <job chain>_0Or Spooler. add job chain() _.

Should an order with the same order. id_already exist in a job chain, then an exception with the error code
SCHEDULER-186 _is returned. However, see also Job chain. add or replace order() ..

Returned value:
Order_

5.3.5 name
The name of a job chain
Syntax: job_chain. name =string

Syntax: string job_chain. name

Example: in javascript

var job chain = spooler.create job chain();
job chain. name = "JobChain";

5.3.6 node

The job chain nodes with a given state

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm?help_URL=scheduler.messages.htm#message_SCHEDULER-186

VBScript API 202

Syntax: Job chain node_ job_chain. node (variant state)

Returned value:
Job chain node_

5.3.7 order_count

The number of orders in a job chain

Syntax: Integer job_chain. order_count

5.3.8 order_queue

= node(state).job().order queue()

Syntax: Order queue_ job_chain. order_queue (Variant state)
Returns the order queue which has a given state.

Returned value:
Order queue_

5.3.9 orders_recoverable

Syntax: job_chain. orders_recoverable =Boolean
Syntax: Boolean job_chain. orders_recoverable

See <job chain orders recoverable="">_,

5.3.10 remove
Job chain deletion
Syntax: job_chain. remove ()

Should orders in a job chain still be being processed (in spooler process() _) when the chain is to be deleted,
then the JobScheduler will wait until the last order has been processed before deleting the chain.

Orders remain in the database. Should a new job chain be added which has the same name as a deleted job chain
(spooler. add job chain()), then the JobScheduler will reload any orders from the original job chain which have
remained in the database. Note however, that the states of the orders in the new job chain should be the same as
those in the original chain at the time of its deletion.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 293

5.3.11 title
Syntax: job_chain. title =String
Syntax: string job_chain. title

See <job chain title="">_.

5.4 Job_chain_node

A job chain node is assigned a position in a job chain (_Job chain_). The following elements make up a job chain
node: a state, a job, a successor state and an error state.

A job chain node is created either using Job chain. add job() Or Job chain. add end state()

5.4.1 action
Stopping or missing out job chain nodes
Syntax: node. action =String

Syntax: string node. action

Example: in javascript

var job chain node = spooler.job chain("my job chain").node(100);
job chain node. action = "next state";

This option is not possible with distributed job chains.

Possible settings are:

action="process"

This is the default setting. Orders are carried out.

action="stop"
Orders are not carried out, they collect in the order queue.

action="next_state"
Orders are immediately handed over to the next node as specified with next state.

See also <job chain node. modify action="">_.

Character string constonants are defined in Java:

. Job _chain node. ACTION PROCESS
. Job chain node. ACTION STOP
. Job chain node. ACTION NEXT STATE

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 294

5.4.2 error_node

The next node in a job chain in the event of an error

Syntax: Job chain node_ node. error_node

Example: in javascript

var job chain node = spooler.job chain("Jobchain").node(100);
spooler log. debug("error state=" + job chain node. error node.state); !/
"state=999"

Returned value:
Job chain node_

null, in the event of no error node being defined (the error state has not been specified)

5.4.3 error_state

State of a job chain in event of an error

Syntax: variant node. error_state

Example: in javascript
var job chain node = spooler.job chain("Jobchain").node(100);
spooler log.debug("error state=" + job chain node. error node.state); // "error
state=999"
5.4.4 job

The job allocated to a node

Syntax: Job_ node. job

Example: in javascript

var job chain node = spooler.job chain("Jobchain").node(100);

spooler log. debug("job=" + job chain node. job. name) ; //
"Job=job_ 100"

Returned value:
Job_

Software- and Organisations-Service GmbH March 2015

VBScript API

295

5.4.5 next_node

Returns the next node or null if the current node is assigned the final state.

Syntax: Job chain node_ node. next_node

Returned value:
Job chain node_

5.4.6 next_state

The order state in a job chain after successful completion of a job

Syntax: variant node. next_state

Example: in javascript

var job chain node = spooler.job chain("Jobchain").node(100);

spooler log. debug("next state=" + job chain node. next state);
"state=200"

//

5.4.7 state

The valid state for a job chain node

Syntax: variant node. state

Example: in javascript

var job chain node = spooler.job chain("Jobchain").node(100);

spooler log.info("state=" + job chain node. state);
"state=100"

//

5.5 Job_impl - Super Class for a Job or the JobScheduler Script

Job methods are called in the following order:

spooler init()
spooler open()
spooler process()
spooler process()

spooler close()
spooler on success() or spooler on error()

Software- and Organisations-Service GmbH

March 2015

VBScript API 296

spooler exit()

None of these methods must be implemented. However, it is usual that at least the spooler process() _method is
implemented.

An error during carrying out a job script whilst loading or during spooler init() Causes spooler on error() .to
be called. The job is then stopped and spooler exit() called (although spooler init() _has not been called!).
The script is then unloaded.

Note that spooler on error()_must also be able to handle errors which occur during loading or in
spooler init() ..

Note also that spooler exit() _is called even though spooler init() has not been called.

5.5.1 spooler

The JobScheduler base object

Syntax: Spooler_ spooler

Example: in javascript

spooler log.debug("The working directory of the JobScheduler is " + spooler.directory
) ;

Returned value:
Spooler_

5.5.2 spooler_close
Task end
Syntax: spooler_close ()

This method is called after a job has been completed. The opposite of this method is spooler open() .

5.5.3 spooler_exit
Destructor
Syntax: spooler_exit ()

Is called as the last method before the script is unloaded. This method can be used, for example, to close a
database connection.

Software- and Organisations-Service GmbH March 2015

VBScript API 297

5.5.4 spooler_init
Initialization
Syntax: Boolean spooler_init ()

The JobScheduler calls these methods once before spooler open() _. This is analog to spooler exit() _. This
method is suitable for initializing purposes (e.g. connecting to a database).

Returned value:
Boolean

false ends a task. The JobScheduler continues using the spooler exit() _method. When the task is processing
an order, then this return value makes the JobScheduler terminate the job with an error. That is, unless a repeated
start interval has been set using Job. delay after error

5.5.5 spooler_job

The job object

Syntax: Job_ spooler job

Example: in javascript

spooler log.info("The name of this job is " + spooler job.name);

Returned value:
Job_

5.5.6 spooler_log

Event logging object

Syntax: Log_ spooler_log

Example: in java

spooler log.info("Something has happened");

Returned value:
Log_

5.5.7 spooler_on_error

Unsuccessful completion of a job

Syntax: spooler_on_error ()

Software- and Organisations-Service GmbH March 2015

VBScript API 208

Is called at the end of a job after an error has occurred (after spooler close() butbefore spooler exit()).

5.5.8 spooler_on_success
Successful completion of a job
Syntax: spooler_on_success ()

This method is called by the JobScheduler after spooler close() and before spooler exit() _; should no error
have occurred.

5.5.9 spooler_open

The Start of a Task
Syntax: Boolean spooler_open ()

This method is called immediately after spooler init() _. The opposite of this method is spooler close() ..

5.5.10 spooler_process

Job steps or the processing of an order

Syntax: Boolean spooler_process ()

Processes a job step.

An order driven job stores the current order in Task. order .

The default implementation returns false. The implementation of an order driven job can set the successor state for
an order by returning true.

Returned value:
Boolean

In the event of standard jobs <job order="no">_: false the JobScheduler ends processing of this job; true> the
JobScheduler continues calling the spooler process() method.

In the event of order driven jobs <job order="yes">_ : false the order acquires the error state (s.
Job chain node_and <job chain node>_). true the order acquires the next state or is terminated if the next state
is the final state. This, however, does not apply when the state is changed during execution using order. state_.

5.5.11 spooler_task

The task object

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API

299

Syntax: Task_ spooler_task

Example: in javascript

spooler log.info("The task id is " + spooler task.id);

Returned value:
Task_

5.6 Lock

See also <lock name="">_.

Example: in javascript

var locks = spooler. locks;

var lock locks. create lock();
lock. name "my lock";

locks. add lock(lock);

5.6.1 max_non_exclusive

Limitation of non-exclusive allocation

Syntax: lock. max non_exclusive =Integer
Syntax: Integer

lock. max_non_exclusive

The default setting is unlimited (231-1), which means that with <lock. use exclusive

—_n

="Nno

">_any number of

non-exclusive tasks can be started (but only one exclusive task).
The number cannot be smaller than the number of non-exclusive allocations.

See also <lock max non exclusive="">_.

5.6.2 name

The lock name

Syntax: lock. name =String
Syntax: String lock. name

The name can only be set once and cannot be changed.

See also <lock name="">_.

Software- and Organisations-Service GmbH

March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 300

5.6.3 remove

Removes a lock

Syntax: lock. remove ()

Example: in javascript

spooler. locks. lock("my lock").remove();

A lock can only be removed when it is not active - that is, it has not been allocated to a task and it is not being used
by ajob (<lock. use>).

See also <lock. remove> .

5.7 Locks

5.7.1 add_lock

Adds a lock to a JobScheduler

Syntax: locks. add_lock (Lock lck)

5.7.2 create_lock
Creates a new lock
Syntax: Lock_ locks. create_lock ()

Returns a new lock Lock_. This lock can be added to the JobScheduler using Locks. add lock() _.

Returned value:
Lock_

5.7.3 lock

Returns a lock
Swﬂax Lock_ locks. lock (String lock name)
An exception will be returned if the lock is unknown.

Returned value:
Lock_

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 301

5.7.4 lock_or_null

Returns a lock

Syntax: Lock_ locks. lock_or_null (String lock name)

Returned value:
Lock_

null, when the lock is unknown.

5.8 Log - Logging

The spooler 1og method can be used in a job or in the JobScheduler start script with the methods described here.
Notification by e-mail

The JobScheduler can send a log file after a task has been completed per e-mail. The following properties define in
which cases this should occur.

. Log. mail on error,,

. Log. mail on warning_,

° Log. mail on process_,

. Log. mail on success_and
. Log. mail it

Only the end of a task - and not the end of an order - (i.e. spooler process() _) can initiate the sending of e-mails.
However, see Task. end() _.

The Log. mail_method makes the Mail_object available, which in turn addresses the mails.

Example: in javascript
spooler log.info("Something for the Log");

spooler log.mail on warning = true;

spooler log.mail. from = "scheduler@company. com";
spooler log.mail. to "admin@company. com";
spooler log. mail. subject "ended";

5.8.1 debug

Debug message (level -1)

Syntax: spooler_log. debug (String line)

Software- and Organisations-Service GmbH March 2015

VBScript AP 302
5.8.2 debug

Debug message (level -1)

Syntax: spooler_log. debugl (String line
5.8.3 debug?2

Debug message (level -2)

Syntax: spooler log. debug2 (String line
5.8.4 debug3

Debug message (level -3)

Syntax: spooler_log. debug3 (String line
5.8.5 debug4

Debug message (level -4)

Syntax: spooler_log. debugd4 (String line
5.8.6 debugb

Debug message (level -5)

Syntax: spooler_log. debug5 (String line
5.8.7 debugb

Debug message (level -6)

Syntax: spooler_log. debugé (String line
5.8.8 debug?

Debug message (level -7)

Software- and Organisations-Service GmbH March 2015

VBScript API 303

Syntax: spooler_log. debug7 (String line)

5.8.9 debug8

Debug message (level -8)

Syntax: spooler log. debug8 (String line)

5.8.10 debug9

Debug message (level -9)

Syntax: spooler_log. debug9 (String line)

5.8.11 error

Error Message (Level 1)
Syntax: spooler_log. error (String line)

A job stops after a task has ended, should an error message have been written in the task log (spooler 1og_)and
<job stop on error="no">_not have been set.

5.8.12 filename

Log file name

Syntax: string spooler_log. filename

5.8.13 info

Information message (Level 0)

Syntax: spooler_log. info (String line)

5.8.14 last

The last output with the level specified

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 304

Syntax: string spooler_log. last (Integer| String level)

5.8.15 last_error_line

The last output line with level 2 (error)

Syntax: string spooler_|log. last_error_line

5.8.16 level

Limit protocol level
Syntax: spooler_log. level =Integer

Syntax: Integer spooler log. level

Defines the level with which protocol entries should be written. Every protocol entry is given one of the following
categories: error, warn, info, debugl t0o debug9 (debugl is the same as debug).

Only messages above the level specified will be given out.

The meanings of the numerical values are:

-9to-2: debug9 to debug?2
-1: debug

0: info

1: warn

2: error

The -10g-1evel option has precedence over this parameter.

The factory. ini _(section[job] , entry 1og level=..) setting is overwritten by this parameter.

The factory. ini _(section[spooler], entry 1og level=..) setting is overwritten by this parameter.

Only messages above the level specified will be given out.

The meanings of the numerical values are:

-9to -2: debug9 t0 debug2
-1: debug

0: info

1: warn

2: error

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 305

5.8.17 log

Writes in the log file with the specified level.

Syntax: spooler_log. log (Integer level, String line)

5.8.18 log_file

Adds the content of a file to the log file
Syntax: spooler_log. log_file (String path)
Log the content of a file with level O (info). An error occurring whilst accessing the file is logged as a warning.

Note that when executed on a remote computer with <process class remote scheduler="">_the file is read
from the JobScheduler's file system and not that of the task.

5.8.19 mail
E-mail settings are made in the Mai1 Object
Syntax: spooler log. mail =Mail

Syntax: Mail_ spooler log. mail

Returned value:
Mail_

5.8.20 mail_it

Force dispatch

Syntax: spooler_log. mail it =Boolean

If this property is set to true, then a log will be sent after a task has ended, independently of the following settings:

Log. mail on error_, Log.mail on warning_, Log.mail on success_, Log.mail on process_ and

Log. mail on error_.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 306

5.8.21 mail_on_error

Sends an e-mail should a job error occur. Errors are caused by the Log. error() method or by any exceptions that
have not been caught by a job.

Syntax: spooler_log. mail_on_error =Boolean

Syntax: Boolean spooler_log. mail on_error

Content of the e-mail is the error message. The log file is sent as an attachment.

The factory. ini _(section[job],entrymail on error=.) setting is overwritten by this parameter.

The factory. ini _(section[spooler], entrymail on error=..) setting is overwritten by this parameter.

Content of the e-mail is the error message. The log file is sent as an attachment.

5.8.22 mail_on_process

Sends an e-mail should a job have successfully processed the number of steps specified. Steps are caused by the
spooler process() _methods:

Syntax: spooler_log. mail_on_process =Integer

Syntax: Integer spooler_log. mail_on_process

Causes the task log to be sent when a task has completed at least the specified number of steps - i.e. calls of
spooler process() _. Because non-API tasks do not have steps, the JobScheduler counts each task as a single
step.

Content of the e-mail is the success message. The log file is sent as an attachment.

The factory. ini _(section[job] , entry mail on process=.) setting is overwritten by this parameter.

The factory. ini _(section[spooler], entrymail on process=.) setting is overwritten by this parameter.

Content of the e-mail is the success message. The log file is sent as an attachment.

5.8.23 mail_on_success
Sends an e-mail should a job terminate successfully.
Syntax: spooler_log. mail_on_success =Boolean

Syntax: Boolean spooler_log. mail_on_success

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 307

The success message forms the content of the e-mail. The log file is sent as an attachment.

The factory. ini _(section[job] ,entrymail on success=..) setting is overwritten by this parameter.

The factory. ini (section[spooler],entrymail on success=..) setting is overwritten by this parameter.

The success message forms the content of the e-mail. The log file is sent as an attachment.

5.8.24 mail_on_warning

Sends an e-mail should a job warning occur. Warnings are caused by the Log. warn() _method.
Syntax: spooler_log. mail_on_warning = Boolean

Syntax: Boolean spooler_log. mail_on_warning

The warning forms the content of the e-mail. The log file is sent as an attachment.

The factory. ini _(section[spooler],entrymail on warning=..) setting is overwritten by this parameter.

The warning forms the content of the e-mail. The log file is sent as an attachment.

5.8.25 new_filename

A new name for the log file

Syntax: spooler_log. new_filename =String
Syntax: string spooler_|log. new_filename

Sets the name of the log file. The JobScheduler copies a log into this file after a log has been made. This file is
then available to other applications.

5.8.26 start_new_file

Only for the main log file: closes the current log file and starts a new one

Syntax: spooler_log. start_new_file ()

5.8.27 warn

Warning (Level 2)

Syntax: spooler_log. warn (String line)

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API

308

5.9 Mail - e-mail dispatch

See Log. mail .

5.9.1 add_file

Adds an attachment

Syntax:rna". add_file (String path, String filename for mail (optional)
(optional) , String encoding (optional))

, String content type

Example: in javascript

spooler log.mail.add file("c:/tmp/l.txt", "1.txt", "text/plain",

"quoted-printable");

Parameters:
path

filename for mail
content type

encoding

5.9.2 add_header _field

Adds a field to the e-mail header

path to the file to be appended
The file name to appear in the message
"text/plain" is the preset value.

€.g. "quoted printable"

Syntax: mail. add_header field (String field name, String value)

5.9.3 bcc

Invisible recipient of a copy of a mail, (blind carbon copy)

Syntax: mail. bec =String

Syntax: String mail. bee

Example: in javascript

spooler log. mail. bcc

"hans@company. com";

Software- and Organisations-Service GmbH

March 2015

VBScript API 309

Multiple addresses (separated by commas) can be specified when the hostware uses JavaMail to send e-mails.

See javax.mail.InternetAddress.parse(String).

The factory. ini _(section[job] , entry 1og mail bcc=..) setting is overwritten by this parameter.

The factory. ini _(section[spooler], entry 1og mail bcc=..) setting is overwritten by this parameter.

Multiple addresses (separated by commas) can be specified when the hostware uses JavaMail to send e-mails.

See javax.mail.InternetAddress.parse(String).

5.9.4 body
Message content
Syntax: mail. body =String

Syntax: string mail. body

Example: in javascript

spooler log. mail. body = "Job succeeded";

Line feed / carriage return is coded with \n (chr(10) in VBScript).

59.5cc
Recipient of a copy of a mail, (carbon copy)
Syntax: mail. cc =string

Syntax: string mail. cc

Example: in javascript

spooler log.mail.cc = "hans@company.com";

Multiple addresses (separated by commas) can be specified when the hostware uses JavaMail to send e-mails.

See javax.mail.InternetAddress.parse(String).

The factory. ini _(section] job] , entry 1og mail cc=..) setting is overwritten by this parameter.

The factory. ini _(section] spooler], entry 1og mail cc=..) setting is overwritten by this parameter.

Multiple addresses (separated by commas) can be specified when the hostware uses JavaMail to send e-mails.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://java.sun.com/products/javamail/javadocs/javax/mail/internet/InternetAddress.html#parse(java.lang.String)
http://java.sun.com/products/javamail/javadocs/javax/mail/internet/InternetAddress.html#parse(java.lang.String)
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://java.sun.com/products/javamail/javadocs/javax/mail/internet/InternetAddress.html#parse(java.lang.String)
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 310

See javax.mail.InternetAddress.parse(String).

5.9.6 dequeue

Repeated attempts can be made to send messages from the queue dir directory
Syntax: Integer mail. dequeue ()

See Mail. dequeue log_, factory. ini (section[spooler],entrymail gqueue dir=..).

Returned value:
Integer

The number of messages sent

5.9.7 dequeue_log

The dequeue() log

Syntax: string mail. dequeue_log

Example: in javascript

var count = spooler log.mail.dequeue();
spooler log.info(count + " messages from mail queue sent");
spooler log.info(spooler log.mail.dequeue log);

See Mail. dequeue() _.

5.9.8 from
Sender
Syntax: mail. from =String

Syntax: string mail. £rom

Example: in javascript

spooler log.mail. from = "scheduler@company. com";

The factory. ini _(section[job] , entry 1og mail from=..) setting is overwritten by this parameter.

The factory. ini _(section[spooler], entry log mail from=..) setting is overwritten by this parameter.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://java.sun.com/products/javamail/javadocs/javax/mail/internet/InternetAddress.html#parse(java.lang.String)

VBScript API 31

5.9.9 queue_dir
The directory used for returned e-mails
Syntax: mail. queue_dir =String path

Syntax: string mail. queue_dir

E-mails which cannot be sent (because, for example, the SMTP server cannot be contacted) are stored in this
directory.

In order to send these e-mails later it is necessary to write a job which calls up the Mail. dequeue() method.

This setting is generally made in sos. ini (section[mail], entry gueue dir=..).

Environment variables (e.g. sHOME) are replaced by this attribute (see Settings which Allow Environment Variables
to be Called).

The factory. ini _(section[job] , entry mail gqueue dir=..) setting is overwritten by this parameter.

The factory. ini _(section[spooler], entry mail queue dir=..) setting is overwritten by this parameter.

The sos. ini (section[mail], entry queue dir=..) setting is overwritten by this parameter.

5.9.10 smtp
The name of the SMTP server
Syntax: mail. smtp =String

Syntax: string mail. smtp

Example: in javascript

spooler log.mail.smtp = "mail. company. com";

These settings are generally made using sos. ini _(section| mail], entry smtp=...).

smtp=-queue Stops e-mails being sent. Instead mails are written into the file specified in queue dir. See also
sos. ini_(section[mail], entry queue only=..).

The factory. ini _(section[job] , entry smtp=..) setting is overwritten by this parameter.

The factory. ini_(section[spooler] , entry smtp=..) setting is overwritten by this parameter.

The sos. ini (section[mail], entry smtp=..) setting is overwritten by this parameter.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 312

5.9.11 subject
Subject, re
Syntax: mail. subject =String

Syntax: string mail. subject

Example: in javascript

spooler log. mail. subject = "Job succeeded";

The factory. ini _(section] job] , entry 1og mail subject=..) setting is overwritten by this parameter.

The factory. ini (section[spooler], entry 1og mail subject=..) setting is overwritten by this parameter.

5.9.12 to
Recipient
Syntax: mail. to =string

Syntax: string mail. to

Example: in javascript

spooler log.mail.to = "admin@company.com";

Multiple addresses (separated by commas) can be specified when the hostware uses JavaMail to send e-mails.

See javax.mail.InternetAddress.parse(String).

The factory. ini _(section[job],entry 1og mail to=..) setting is overwritten by this parameter.

The factory. ini _(section[spooler], entry log mail to=..) setting is overwritten by this parameter.
Multiple addresses (separated by commas) can be specified when the hostware uses JavaMail to send e-mails.

See javax.mail.InternetAddress.parse(String).

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://java.sun.com/products/javamail/javadocs/javax/mail/internet/InternetAddress.html#parse(java.lang.String)
http://java.sun.com/products/javamail/javadocs/javax/mail/internet/InternetAddress.html#parse(java.lang.String)
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 313

5.9.13 xslt_stylesheet

The XSLT style sheet for e-mail processing. Before sending an e-mail the JobScheduler creates an XML document
containing the e-mail headers, subject and body. The content of these elements can be adjusted or overwritten by
an individual XSLT style sheet. This can be used e.g. to create translations of e-mail content. Having processed the
XSLT style sheet the JobScheduler sends the resulting content of the XML elements as e-mail.

Syntax: xslt stylesheet_ Mmail. xslt_stylesheet

Returned value:
Xslt stylesheet_

The XSLT style sheet as a string

5.9.14 xslt_stylesheet_path

The path and file name of the XSL style sheet for e-mail processing.

Syntax: mail. xslt_stylesheet path =String path

Example: in javascript

spooler log.mail. xslt stylesheet path = "c:/stylesheets/mail. xslt";

The path to the XSLT style sheet. XSLT style sheets are used by the JobScheduler for the preparation of e-mails.
At the time of writing (April 2006) this subject is not documented.

<config mail xslt stylesheet="..">
Parameters:
path The path of the file containing the XSLT style sheet

5.10 Monitor_impl - Using Super Classes for Start Scripts or Jobs

A job can be given a monitor using <monitor>_.

A monitor can provide the following methods:

Monitor impl. spooler task before()
Before starting a task - can prevent a task from being started.

Monitor impl. spooler task after()
After a task has been completed.

Monitor impl. spooler process before()
Before spooler process() -this method can stop spooler process() from being called.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 314

Monitor impl. spooler process after()

After spooler process() - can be used to change its return value.

5.10.1 spooler

The JobScheduler Object

Syntax: Spooler_ spooler

Example: in javascript

spooler log. debug("The working directory of the JobScheduler is " + spooler.directory

)

Is the same object as spooler_in the Job impl class.

Returned value:
Spooler_

5.10.2 spooler_job

The Job Object

Syntax: _Job_ spooler_job

Example: in javascript

spooler log.info("The name of this job is " + spooler job.name);

Is the same object as spooler job_ inthe Job impl class.

Returned value:
Job_

5.10.3 spooler_log
Writing Log Files

Syntax: Log_ spooler_log

Example: in java

spooler log.info("Something has happened");

Is the same object as spooler log.inthe Job impl class.

Returned value:
Log_

Software- and Organisations-Service GmbH March 2015

VBScript API

315

5.10.4 spooler_process_after

After spooler process()

Syntax: Boolean spooler process_after (Boolean spooler process result)

Example: in java

{

spooler process result);

}

public boolean spooler task after(boolean spooler process result)

spooler log.info("SPOOLER TASK BEFORE()");

spooler log. info("spooler process() didn't throw an exception and delivered " +

return spooler process result; // Unchanged result

throws Exception

The JobScheduler calls this method after spooler process() _has been carried out.

Parameters:

spooler_process The return value from the spooler process() is setto false, should spooler process()

_result have ended with an exception.

Returned value:
Boolean

Replaces the return value from the spooler process() method or false, should spooler process() have ended

with an error.

5.10.5 spooler_process_before

Before spooler process()

Syntax: Boolean spooler_process_before ()

Example: in java

public boolean spooler process before()

{

return true; // spooler process()

throws Exception

spooler log. info("SPOOLER PROCESS BEFORE()");

will be executed

Software- and Organisations-Service GmbH

March 2015

VBScript API

316

Example: in java

public boolean spooler process before() throws Exception
{

boolean continue with spooler process = true;

if(!are needed ressources available())

{
spooler task. order().setback();

continue with spooler process false;

return continue with spooler process;

This method is called by the JobScheduler before each call of spooler process() .

Returned value:
Boolean

false prevents further calls to spooler process() _. The JobScheduler continues as though false had been

returned by spooler process() false.

5.10.6 spooler_task

The Task Object

Syntax: Task_ spooler_task

Example: in javascript

spooler log.info("The task id is " + spooler task.id);

Is the same object as spooler task_in the Job impl class.

Returned value:
Task_

5.10.7 spooler_task_after

After Completing a Task

Syntax: spooler_task_after ()

Example: in java

public void spooler task after() throws Exception

{
spooler log.info("SPOOLER TASK AFTER()");

Software- and Organisations-Service GmbH

March 2015

VBScript API

317

This method is called by the JobScheduler after a task has been completed.

5.10.8 spooler_task before

Before Starting a Task

Syntax: Boolean spooler_task_before ()

Example: in java

public boolean spooler task before() throws Exception
{
spooler log. infol("SPOOLER TASK BEFORE()");
return true; // Task will be started
//return false; // Task will not be started

This method is called by the JobScheduler before a task is loaded.

Returned value:
Boolean

false does not allow a task to start and Monitor impl.spooler task after() will not be called.

5.11 Order - Order

See JobScheduler Documentation, spooler. create order() _, Job chain. add order() _, Task. order_.

File order

A file order is an order with for which the scheduler file path parameter has been set: order. params_.

Variable set. value()

See JobScheduler Documentation.

Software- and Organisations-Service GmbH

March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 318
Example: An Order with a simple Payload, in javascript
// Create order:
{
var order = spooler.create order():;
order. id = 1234;
order. title = "This is my order";
order. state text = "This is my state text";
order. payload = "This is my payload";
spooler. job chain("my job chain").add order(order);
}
// Process order:
function spooler process()
{
var order = spooler task.order;
spooler log. info("order. payload=" + order. payload);
return true;
}
Example: Creating an Order with a Variable_set as a Payload, in javascript
// Create order:
{
var variable set = spooler.create variable set();
variable set.value("param one") = "11111";
variable set.value("param two") = "22222";
var order = spooler.create order();
order. id = 1234;
order. payload = variable set;
spooler. job chain("my job chain").add order(order);
}
// Process order:
function spooler process()
{
var order = spooler task.order;
var variable set = order. payload;
spooler log.info("param one=" + variable set.value("param one"));
spooler log.info("param two=" + variable set.value("param two"));
return true;
}
5111 at
The order start time
Syntax: order. at =String|DATE
Example: in javascript
order. at = "now+65";
spooler. job chain("my job chain").add order(order);
Software- and Organisations-Service GmbH March 2015

VBScript API 319

Used to set the start time before an order is added to an order queue. The following can be specified as a string:

3 "now"

. "yyyy-mm-dd HH: MM : SS]"
. "now + HH: MM : SS1"

. "now + seconds"

This setting changes start times set by order. run time_Or Order. setback() _.

See <add order at="">_.

5.11.2 end_state

The state that should be reached when an order has been successfully completed
Syntax: order. end_state =Variant
Syntax: variant order. end_state

When an order has its own end_state other than "" then it is considered to be completed after the job allocated to
this end state has been completed and before the order otherwise leaves this state (see <job chain node>_for
example to continue to another job which usually comprises a part of the job chain).

The state specified has to reference a valid state of a job node in the job chain.

5.11.3id

Order Identification
Syntax: order. id =variant
Syntax: variant order. id

Every order has an identifier. This identifier must be unique within a job chain or job order queue. It should also
correspond to the data being processed. Normally database record keys are used.

When an id is not set, then the JobScheduler automatically allocates one using Job chain. add order() _.

5.11.4 job_chain

The job chain containing an order
Syntax: Job chain_ order. job _chain

Returned value:
Job chain_

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 320

5.11.5 job_chain_node

The job chain nodes which correspond with the order state

Syntax: Job chain node_ order. job_chain_node

Returned value:
Job chain node_

5.11.6 log

Order log

Syntax: _Log_ order. log

Example:

spooler task. order. log. info("Only for order log, not for task log");
spooler log. info("For both order log and task log");

Returned value:
Log_

5.11.7 params

The order parameters

Syntax: order. params =Vvariable set

Syntax: variable set_ order. params

params is held in order. payload_, the latter cannot, therefore, be used together with params.
See <add order>_.

Returned value:
Variable set_

5.11.8 payload
Load - an order parameter.
Syntax: order. payload =vVariable set_|String|Integer|.., payload

Syntax: variable set_|String|Integer|.. order. payload

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 321

Instead of this property, the use of order.params_is recommended, which corresponds to
(Variable set) order. payload.

In addition to order. id_which identifies an order, this field can be used for other information.

See Order. params_and Order. xml payload..

Parameters:
payload May be a string or a variable set_.

Returned value:
Variable set_|[String|Integer]..

May be a string or a variable set_.

5.11.9 payload_is_type
Checks the payload COM-Type
Syntax: Boolean order. payload is_type (String type name)

Parameters:

type_name "Spooler. Variable set","Hostware.Dyn obj" Of"Hostware. Record".

5.11.10 priority

Orders with a higher priority are processed first
Syntax: order. priority =Integer

Syntax: Integer order. priority

5.11.11 remove_from_job_chain

Syntax: order. remove_from job_chain ()

Note that when an order has just been started by a task, then the order. job chain_property will still return the job
chain from which the order has just been removed, using this call, even when "remove from job chain" has
been carried out. It is only when the execution has been ended that this method returns nu11. (other than when the
order has just been added to a job chain). This ensures that the job_chain property remains stable whilst a task is
being executed.

Software- and Organisations-Service GmbH March 2015

VBScript API 322

5.11.12 run_time

<run_time> is used to periodically repeat an order

Syntax: Run time_ order. run_time

Example: in javascript

order. run_time.xml = "<run time><at at='2006-05-23 11:43:00'/></run_time>";

See <run time>..

The <modify order at="now">_command causes an order which is waiting because of run time to start
immediately.

Returned value:
Run time_

5.11.13 setback

Delays an order back for a period of time
Syntax: order. setback ()

An order will be delayed and repeated after the period of time specified in either <delay order after setback>
or Job. delay order after setback_. When the job is repeated, only the spooler process() job function is
repeated. If the order. setback() function is called from spooler process(), then the retrun value from
spooler process() will have no effect. .

An order counts the number of times this method is called in sequence. This count is then used by
delay order after setback>_. It is set to 0, when spooler process()_is completed without
delay order after setback> _being called. All counters are set to 0 when the JobScheduler is started.

INIA

The <modify order at="now"> command causes a blocked order to start immediately.

5.11.14 setback_count
How many times the order is setting back?
Syntax: Integer order. setback_count

see also <delay order after setback>..

5.11.15 state

The order state

Syntax: order. state =variant

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 323

Syntax: variant order. state
When an order is in a job chain, then its state must correspond with one of the states of the job chain.

Whilst an order is being processed by a job the following state, as defined in the job chain (<job chain node
next state="">_) has no effect. Similarly, the return values from spooler process()__and
Monitor impl.spooler process after()_are meaningless. This means that with order. state_the following
state for a job can be set as required.

An order is added to the job order queue which is corresponding to its state. See <job chain node>_. The
execution by this job will be delayed until the job currently carrying out the order has been completed.

5.11.16 state_text

Free text for the order state

Syntax: order. state_text =String
Syntax: string order. state_text
This text is shown on the HTML interface.

For non-API jobs the JobScheduler fills this field with the first line from stdout, up to a maximum of 100 characters.

5.11.17 string_next_start_time

The next start time of an order when <run time> is being used
Syntax: string order. string next_start_time

Returned value:
String

"yyyy-mm-dd HH: MM: SS. MMM" Of "now" O "never".

5.11.18 suspended

Suspended order

Syntax: order. suspended =Boolean
Syntax: Boolean order. suspended
A suspended order will not be executed.

When an order is being carried out by a task when it is suspended, then the spooler process() _step will be
completed and the order allocated the successor state before being suspended.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 324

This means that an order can be set to an end state, which stops it from being removed. The JobScheduler can
remove such an order only when it is not suspended - i.e. order. suspended=false).

A suspended order with the end state can be allocated a different state corresponding to a job node in the job
chain. This is effected by using order. state_. In this case the order remains suspended.

5.11.19 title

Optionally a title can be allocated to an order that will show up in the HTML interface and in the logs.
Syntax: order. title =String

Syntax: String order. title

5.11.20 web_service

The web service to which an order has been allocated

Syntax: Web service_ order. web_service

When an order has not been allocated to a web service, then this call returns the scHEDULER-240 _error.

See also Order. web service or null .

Returned value:
Web service_

5.11.21 web_service_operation

The web service operation to which an order has been allocated

Syntax: Web service operation_ order. web_service_operation

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm?help_URL=scheduler.messages.htm#message_SCHEDULER-240

VBScript API 325

Example: in java

public boolean spooler process() throws Exception

{
Order order = spooler task. order() :;
Web service operation web service operation = order. web service operation();
Web service request request = web service operation. request();

// Decode request data
String request string = new String(request. binary content(),
request. charset name());

process request string ...;

String response string = "This is my response";
String charset name = TUTE=g" e
ByteArrayOutputStream byos = new ByteArrayOutputStream() ;

// Encode response data

Writer writer = new OutputStreamWriter(byos, charset name);
writer. write(response string);

writer. close();

// Respond
Web service response response = web service operation. response();

response. set _content type("text/plain");
response. set charset name(charset name);
response. set binary content(byos. toByteArray()):;
response. send() ;

// Web service operation has finished

return true;

See <web service> , Web service operation and Order. web service operation or null_,

Returned value:
Web service operation_

5.11.22 web_service_operation_or_null

The web service operation to which an order has been allocated, or nul1l

Syntax: Web service operation_ Order. web_service_operation_or_null

See Order. web service operation_, Web service operation_and <web service>_.

Returned value:
Web service operation_

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 326

5.11.23 web_service_or_null
The web service to which an order has been allocated, or null.
Syntax: Web service_ order. web_service_or_null

See also Order. web service._.

Returned value:
Web service_

5.11.24 xml

Order in XML: <order>...</order>
Syntax: string order. xml

Returned value:
String

See <order>

5.11.25 xml_payload

XML payload - an order parameter.

Syntax: order. xml_payload =String xml

Syntax: string order. xml_payload

This property can include an XML document (in addition to the order. params_property).

<xml payload>_contains the XML document root element (instead of it being in #Pcpara coded form).

5.12 Order_queue - The order queue for an order controlled job

An order controlled job (<job order="yes">_has an order queue, which is filled by the orders to be processed by
a job. The orders are sorted according to their priority and the time at which they enter the queue.

Processing means that the JobScheduler calls the spooler process() _method for a task. This method can access
the order using the Task. order_property. Should the spooler process() end without an error (i.e. without any
exceptions), then the JobScheduler removes the order from the order queue. If the order is in a job chain then it is
moved to the next position in the chain.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API

327

5.12.1 length

The number of orders in the order queue

Syntax: Integer (. length

5.13 Process_class

See also <process class name="">_.

Example: in javascript

var process classs = spooler. process classs;
var process class = process classs.create process class();
process class.name = "my process class";

process classs. add process class(process class);

5.13.1 max_processes
The maximum number of processes that are executed in parallel
Syntax: process_class. max_processes =Integer

Syntax: Integer process_class. max_processes

Should more tasks have to be started than allowed by this setting, then these tasks starts would be delayed until

processes become freed. The default setting is 10.

See also <process class max processes="">_.

5.13.2 name

The process class name

Syntax: process_class. name =String

Syntax: string process_class. name

The name can only be set once and may not be changed.

See also <process class name=""> .

5.13.3 remote_scheduler

The address of the remote JobScheduler, which is to execute a process

Software- and Organisations-Service GmbH

March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API

328

Syntax: process_class. remote_scheduler = String

Syntax: string process_class. remote_scheduler

Example: in javascript

spooler. process classes. process class("my process class").remote scheduler =
"host: 4444";

See also <process class remote scheduler="">_.

Parameters:

The address is specified in the form: " host:
portnumber".

In addition, the IP address is returned on reading: "
hostname / ipnumber: portnumber”"

Returned value:
String

The address is specified in the form: " host: portnumber”.

In addition, the IP address is returned on reading: " hostname / ipnumber: portnumber"

5.13.4 remove

Removal of the process class

Syntax: process_class. remove ()

Example: in javascript

spooler. process classs. process class("my process class").remove();

The JobScheduler delays deletion of the process class as long as tasks are still running. No new tasks will be

started before the class is deleted.

See also <process class. remove>_.

5.14 Process_classes

5.14.1 add_process_class

Adds a process class to the JobScheduler

Syntax: process_classs. add_process_class (Process class pc)

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 329

5.14.2 create_process_class
Creates a new process class
Syntax: Process class_ process_classs. create_process_class ()

Returnds a new Process class_. This class can be made added to the JobScheduler using
Process classes. add process class() _.

Returned value:
Process class_

5.14.3 process_class

Returns a process class

Syntax: Process class_ process_classs. process _class (String process class name)
An exception will occur if the process class is not known.

Returned value:
Process class_

5.14.4 process_class_or_null
Returns a process class
Syntax: Process class_ process_classs. process_class_or_null (String process_class_name)

Returned value:
Process class_

null, when the process class is not known.

5.15 Run_time - Managing Time Slots and Starting Times

See <run time>_, Order_.Schedule_.

Example: in javascript
var order = spooler task.order;

// Repeat order daily at 15:00
order. run_time.xml = "<run time><period single start='15:00'/></run time>";

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 330

5.15.1 schedule

<schedule>

Syntax: Schedule_ run_time. schedule

Returned value:
Schedule_

5.15.2 xml

<run_time>

Syntax: run_time. xml =String

Discards the current setting and resets Run_time.

Parameters:
XML document as a string

5.16 Schedule - Runtime

See <schedule>_, <run time>_, Spooler. schedule ,Run time .

Example: in javascript

spooler. schedule("my schedule").xml = "<schedule><period single start='15:00"'/><
/schedule>";

5.16.1 xml

<schedule>

Syntax: schedule. xml =String

Syntax: string schedule. xml

Deletes the previous setting and resets schedule.

Parameters:
XML document as a string

Returned value:
String

XML document as a string

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 331

5.17 Spooler

There is only one class for this object: spooler .

5.17.1 abort_immediately

Aborts the JobScheduler immediately

Syntax: spooler. abort_immediately ()
Stops the JobScheduler immediately. Jobs do not have the possibility of reacting.

The JobScheduler kills all tasks and the processes that were started using the Task. create subprocess()
method. The JobScheduler also kills processes for which a process ID has been stored using the Task. add pid()
method.

See <modify spooler cmd="abort immediately">_and JobScheduler Documentation.

5.17.2 abort_immediately_and_restart

Aborts the JobScheduler immediately and then restarts it.

Syntax: spooler. abort_immediately_and_restart ()

Similar to the spooler. abort immediately() method, only that the JobScheduler restarts itself after aborting. It
reuses the command line parameters to do this.

See <modify spooler cmd="abort immediately and restart">_and JobScheduler Documentation.

5.17.3 add_job_chain

Syntax: spooler. add_job_chain (Job chain chain)

Job chain. orders recoverable_=true causes the JobScheduler to load the orders for a job chain from the
database.

See spooler. create job chain() _.and <job chain>_.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 332

5.17.4 configuration_directory

Path of the Configuration Directory with hot folders

Swﬂax:string spooler. configuration_directory

<config configuration directory="..">

5.17.5 create_job_chain

Syntax: Job chain_ spooler. create_job_chain ()

Returns a new Job chain_object. This job chain can be added to the JobScheduler using
Spooler. add job chain() after it has been filled with jobs.

See <job chain>_.

Returned value:
Job chain_

5.17.6 create_order

Syntax: oOrder_ spooler. create_order ()

Creates a new order. This order can be assigned to a job chain using the Job chain. add order() method.

Returned value:
Order_

5.17.7 create_variable_set

Syntax: variable set_ Spooler. create_variable set ()

Returned value:
Variable set_

5.17.8 create_xslt_stylesheet

Syntax:_xSlt stylesheet_ spooler. create_xslt_stylesheet (String xml (optional))

Parameters:
xml Creates an XSLT style sheet as an XML string.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 333

Returned value:
Xslt stylesheet_

5.17.9 db_history_table_name

The name of the database table used for the job history

Syntax: string spooler. db_history_table_ name

See also Spooler.db history table name()

The factory. ini (section[spooler], entry db history table=..) setting is overwritten by this parameter.

5.17.10 db_name

The database path

Syntax: String spooler. db_name

The database connection string for the history. Should no value be specified here, then the files will be saved in
.csv format. See factory. ini (section| spooler], entry history file=..).

A simple file name ending in . mdb (€.g. scheduler. mdb) can also be specified here when the JobScheduler is
running on Windows. The JobScheduler then uses a Microsoft MS Access database of this name, which is located
in the protocol directory (see the option -10g-dir_). Should such a database not exist, then the JobScheduler will
create this database.

The JobScheduler automatically creates the tables necessary for this database.

The factory. ini (section [spooler], entry db=..) setting is overwritten by this parameter.

5.17.11 db_order_history_table _name

The name of the order history database table

Syntax: string spooler. db_order_ history_table_name

See also Spooler.db order history table name()

The factory. ini _(section[spooler] , entry db order history table=..) setting is overwritten by this parameter.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 334

5.17.12 db_orders_table_name

The name of the database table used for orders

Syntax: string spooler. db_orders_table_name

See also Spooler.db orders table name()

The factory. ini (section[spooler], entry db orders table=..) setting is overwritten by this parameter.

5.17.13 db_tasks_table name

The name of the task database table

Syntax: String spooler. db_tasks_table name

See also Spooler.db tasks table name()

The factory. ini _(section[spooler], entry db tasks table=..) setting is overwritten by this parameter.

5.17.14 db_variables _table name

The name of the database table used by the JobScheduler for internal variables

Syntax: string spooler. db_variables_table_name

The JobScheduler records internal counters, for example, the ID of the next free task, in this database table.

See also Spooler.db variables table name()

The factory. ini _(section[spooler], entry db variables table=..) setting is overwritten by this parameter.

5.17.15 directory

The working directory of the JobScheduler on starting

Syntax: string spooler. directory

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API

335

Changes the Working Directory.

A task executed on a remote JobScheduler (<process class remote scheduler="">) returns the value for the

remote Scheduler.

The -cd_option has precedence over this parameter.

A task executed on a remote JobScheduler (<process class remote scheduler="">_) returns the value for the

remote Scheduler.

Returned value:
String

The directory ends on Unix with "/" and on Windows with "\".

5.17.16 execute_xml

Carries out XML commands

Syntax: string spooler. execute xml (String xml)

Example: in javascript

spooler log.info(spooler.execute xml("<show state/>"));

Errors are returned as XML <ERROR> replies.

Parameters:
xml See JobScheduler Documentation.

Returned value:
String

Returns the answer to a command in XML format.

5.17.17 hostname

The name of the computer on which the JobScheduler is running.

Syntax: string spooler. hostname

5.17.18 id

The value of the command line -id= setting

Software- and Organisations-Service GmbH

March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 336

Syntax: string spooler. id

The JobScheduler only selects elements in the XML configuration whose spooler id attributes are either empty or
set to the value given here.

When the JobScheduler ID is not specified here, then the JobScheduler ignores the spooler id= XML attribute
and selects all the elements in the XML configuration.

See, for example, <config>_.
The -id_option has precedence over this parameter.

The factory. ini (section [spooler], entry id=..) setting is overwritten by this parameter.

5.17.19 include_path

Returns the command line setting -include-path=.

Syntax: string spooler. include path

The directory of the files which are to be included by the <include>_element.

A task executed on a remote JobScheduler (<process class remote scheduler="">) returns the value for the
remote Scheduler.

Environment variables (e.g. su0ME) are replaced by this attribute (see Settings which Allow Environment Variables
to be Called).

The -include-path_option has precedence over this parameter.

The factory. ini _(section[spooler], entry include path=..) setting is overwritten by this parameter.

<config include path="..">

A task executed on a remote JobScheduler (<process class remote scheduler="">_) returns the value for the
remote Scheduler.

5.17.20 ini_path

The value of the -ini= option (the name of the factory. ini file)
Syntax: String spooler. ini_path

A task executed on a remote JobScheduler (<process class remote scheduler="">_) returns the value for the
remote Scheduler.

See -ini_, JobScheduler Documentation

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 337

5.17.21 is_service

Syntax: Boolean spooler. is_service

Returned value:
Boolean

is true, when the JobScheduler is running as a service (on Windows) or as a daemon (on Unix).

5.17.22 job

Returns a job
Syntax: Job_ spooler. job (String job name)
An exception is returned should the job name not be known.

Returned value:
Job

5.17.23 job_chain

Returns a job chain

Syntax: Job chain_ spooler. job_chain (String name)

Should the name of the job chain not be known, then the JobScheduler returns an exception.

Returned value:
Job chain_

5.17.24 job_chain_exists

Syntax: Boolean spooler. job_chain_exists (String name)

5.17.25 let_run_terminate_and_restart

Syntax: spooler. let_run_terminate_and restart ()

The JobScheduler ends all tasks (by calling the Job impl_method) as soon as all orders have been completed and
then stops itself. It will then be restarted under the same command line parameters.

Software- and Organisations-Service GmbH March 2015

VBScript API

338

See <modify spooler cmd="let run terminate and restart"> and JobScheduler Documentation.

5.17.26 locks

Returns the locks
Syntax: _Locks_ spooler. locks

Returned value:
Locks_

5.17.27 log

The main log
Syntax: Log_ spooler. log
spooler log() _is usually used for this property.

Returned value:
Log_

5.17.28 log_dir

Protocol directory

Syntax: string spooler. log_dir

The directory in which the JobScheduler writes log files.

log dir=*stderr allows the JobScheduler to write log files to the standard output (stderr, normally the screen) .

A task executed on a remote JobScheduler (<process class remote scheduler="">_) returns the value for the

remote Scheduler.

The -10g-dir_option has precedence over this parameter.

The factory. ini _(section[spooler] , entry 1og dir=.) setting is overwritten by this parameter.

A task executed on a remote JobScheduler (<process class remote scheduler="">_) returns the value for the

remote Scheduler.

Software- and Organisations-Service GmbH

March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 339
5.17.29 param

The command line option -param=

Syntax: string spooler. param

Free text. This parameter can be read using spooler. param.

The -param_option has precedence over this parameter.

The factory. ini _(section[spooler], entry param=..) setting is overwritten by this parameter.
5.17.30 process_classes

Returns the process classes

Syntax: _Process classes_ spooler. process_classes

Returned value:

Process classes_

5.17.31 schedule

Returns the schedule_with the name specified or nul1

Syntax: Schedule_ SpOOlel’. schedule (String path)

Returned value:

Schedule_

5.17.32 supervisor_client

Returns the Supervisor_client or nu11

Syntax: Supervisor client_ Spooler. supervisor_client

Returned value:

Supervisor client_

5.17.33 tcp_port

Port for HTTP and TCP commands for the JobScheduler

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 340

Syntax: Integer spooler. tcp_port

The JobScheduler can accept commands via a TCP port whilst it is running. The number of this port is set here -
depending on the operating system - with a number between 2048 and 65535. The default value is 4444.

The JobScheduler operates a HTTP/HTML server on the same port, enabling it to be reached using a web browser
- e.g. via http://localhost:4444.

The JobScheduler does not respond to the tcp port=0 default setting either with TCP or HTTP protocols. This
setting can therefore be used to block a JobScheduler from being accessed - for example via TCP.

The -tcp-port_option has precedence over this parameter.

<config tcp port=".">

Returned value:
Integer

0, when no port is open.

5.17.34 terminate

The proper ending of the JobScheduler and all related tasks

Syntax: spooler. terminate (Integer timeout (optional) , Boolean restart (optional) , boolean
all schedulers (optional) , boolean continue exclusive operation (optional))

Ends all tasks (by calling the spooler close()) method and terminates the JobScheduler.

Should a time limit be specified, then the JobScheduler ends all processes still running after this limit has expired.
(Typical processes are tasks which have remained too long in a method call such as spooler process() _.)

See <modify spooler cmd="terminate"> and JobScheduler Documentation.

Parameters:

timeout The time in seconds which the JobScheduler allows for a task to end. After this time the
JobScheduler stops all processes before stopping itself. If this parameter is not set then the
JobScheduler will wait on tasks indefinitely.

restart restart=true allows the JobScheduler to restart after ending.

all_schedu all schedulers=true ends all the JobSchedulers belonging to a cluster (see -exclusive_). This
lers may take a minute.

continue_e continue exclusive operation=true causes another JobScheduler in the Cluster to take

xclusive o pecome active (see -exclusive.).
peration

5.17.35 terminate_and_restart

Correctly terminates the JobScheduler and all tasks before restarting

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 341

Syntax: spooler. terminate_and restart (Integer timeout (optional))

Similar to the spooler. terminate() _method, but the JobScheduler restarts itself.

See <modify spooler cmd="terminate and restart">_and JobScheduler Documentation.

Parameters:

time The time in seconds which the JobScheduler allows for a task to end. After this time the JobScheduler
out stops all processes before stopping itself. If this parameter is not set then the JobScheduler will wait on
tasks indefinitely.

5.17.36 udp_port

Port for UDP commands for the JobScheduler

Syntax: Integer spooler. udp_port

The JobScheduler can also accept UDP commands addressed to the port specified in this setting. Note that a UDP
command must fit in a message and that the JobScheduler does not answer UDP commands.

The default value of udp port=0 does not allow the JobScheduler to open a UDP port.
The -udp-port_option has precedence over this parameter.

<config udp port=".">

Returned value:
Integer

0, when no port is open.

5.17.37 var

Allows access to variables defined in the JobScheduler start script
Syntax: spooler. var (String name) = Variant

Syntax: Variant spooler. var (String name)

The variables are used by all JobScheduler job implementations.

5.17.38 variables

The JobScheduler variables as a variable set

Syntax: variable set_ spooler. variables

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 342

The variables can be set in the configuration file using <config> .

Returned value:
Variable set_

5.18 Spooler_program - Debugging Jobs in Java

Starts the JobScheduler using Java, so that jobs written in Java can be debugged (e.g. using Eclipse). See
Javadoc for information about the methods.

The JobScheduler is started as a Windows application and not as a console program. Output to stderr is lost -
standard output is shown in Eclipse. -10g-di r_shows no output.

See JobScheduler Documentation.

Example:

C:\>java -Djava. library. path=.. -classpath ..\sos. spooler. jar sos.spooler. Spooler program
configuration. scheduler -log-dir=c: \tmp\scheduler

Should the location of the scheduler. dll not be specified in $PATH% then it may be set using
-Djava. library. path=...

5.19 Subprocess

A subprocess is a process which can be started using either Task. create subprocess() Or Subprocess. start()

Example: system() - the Simple Execution of a Command, in javascript
exit code = my system("backup /");

function system(cmd, timeout)

{

var subprocess = spooler task.create subprocess():;

try

{
if(timeout) subprocess. timeout = timeout;
subprocess. start(cmd);
subprocess. wait for termination();
return subprocess. exit code;

}

finally

{
subprocess. close() ;

}

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 343

Example: in javascript

var subprocess = spooler task.create subprocess();
subprocess. environment("testl") = "one";
subprocess. environment("test2") = "two";
subprocess. ignore error = true;

subprocess. start("sleep 20");

spooler log.info("pid=" + subprocess. pid);
subprocess. timeout = 10;

spooler log.info("wait for termination ...");
var ok = subprocess.wait for termination(10);
spooler log.info("wait for termination ok=" + ok);

if(subprocess. terminated)
{
spooler log.info("exit code=" + subprocess.exit code);
spooler log.info("termination signal=" + subprocess. termination signal);

5.19.1 close

Frees system resources
Syntax: subprocess. close ()

This method should only be called in language with a garbage collector (Java, JavaScript). In all other cases the
task ends immediately.

Should this method have been called in a language with a garbage collector, then the subprocess is no longer
usable.

5.19.2 env

Environment Variables as Variable_sets

Syntax: variable set_ subprocess. env

Example: in javascript

var subprocess = spooler task.create subprocess();
subprocess. start(subprocess. env. substitute("${MY HOME}/my program"));
subprocess. wait for termination();

Returns a variable set for the environment variables.

Initially the environment is filled by the environment variables from the calling process. Environment variables can
be removed in that they are set to "". Calling subprocess. start() _hands over environment variables to the
subprocess.

Note that the names of environment variables are case sensitive on UNIX systems.

Software- and Organisations-Service GmbH March 2015

VBScript API 344

Changes made to environment variables after the start of a subprocess have no effect. This is also true for
environment variables changed by the process.

This object cannot be handed over to other objects - it is a part of the task process, whereas the majority of other
objects are part of the JobScheduler process.

Returned value:
Variable set_

5.19.3 environment

Environment variables

Syntax: subprocess. environment (String name) =String value

Example: in javascript

// The following two statements have the same effect
subprocess. environment("my variable") = "my value"
subprocess. env. value("my variable") = "my value"

Variables set here are handed over to a new subprocess together with any other environment variables belonging
to the process.

Note that the names of environment variables are case sensitive on UNIX systems.

See also subprocess. env._.

5.19.4 exit_code

Syntax: Integer subprocess. exit_code

Is only called after subprocess. terminated == true.

5.19.5 ignore_error

Prevents that a job is stopped, should exit code != 0.
Syntax: subprocess. ignore_error =Boolean
Syntax: Boolean subprocess. ignore_error

Prevents a job from being stopped, when at the end of a task the subprocess ends with subprocess. exit code! =
0.

Should a task not wait for the end of a subprocess with the subprocess. wait for termination_method, then the
JobScheduler waits at the end of the task for the end of any subprocesses. In this case the job is stopped with an
error when a subprocess ends with Subprocess. exit code!= 0.

Software- and Organisations-Service GmbH March 2015

VBScript API 345

This may be avoided using ignore error.

5.19.6 ignore_signal

Prevents a job from being stopped when the task is stopped with a UNIX signal.
Syntax: subprocess. ignore_signal =Integer

Syntax: Integer subprocess. ignore _signal

This property does not work on Windows systems, as this system does not support signals.

5.19.7 kill

Stops a subprocess
Syntax: subprocess. kill (Integer signal (optional))

Parameters:
signal Only on UNIX systems: The ki11() signal. O is interpreted here as 9 (s1Gk1LL, immediate ending).

5.19.8 own_process_group

Subprocesses as a Process Group

Syntax: subprocess. own_process_group = Boolean
Syntax: Boolean Subprocess. own_process_group
Only available for UNIX systems.

The default setting can be made using factory.ini (section[spooler], entry
SprIOC@SS. own process group:...)_.

own_process_group allows a subprocess to run in its own process group, by executing the setpgid(0, 0) system
call. When the JobScheduler then stops the subprocess, then it stops the complete process group.

5.19.9 pid

Process identification

Syntax: Integer subprocess. pid

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 346

5.19.10 priority
Process Priority
Syntax: subprocess. priority =Integer

Syntax: Integer subprocess. priority

Example: in javascript

spooler task. priority = +5; // UNIX: reduce the priority a little

UNIX: The highest priority is -20, the lowest 20. The priority of a task can generally only be reduced and not
increased.

The following priority classes are available on Windows systems 4 "idle", 6 "below normal", 8 "normal", 10
"above normal" and 13 "high" (other values are rounded down). See also Task. priority class_.

Note that an error does not occur, should it not be possible to set the priority of a task.
Note also that a process with a higher priority can block a computer.

The priority of a task can be set independently of the operating system with subprocess. priority class_. See
also Task. priority..

5.19.11 priority_class
Priority Class
Syntax: subprocess. priority class =String

Syntax: String subprocess. priority class

Example: in javascript

subprocess. priority class = "below normal";

The following priority classes can be used to set priorities on Windows and UNIX Systems:

Priority Class Windows UNIX
"idle" 4 16
"below normal" 6 6
"normal" 8 0
"above normal" 10 -6
"high" 13 -16

Note that when it is not possible to set a priority for a task - for example, because of inappropriate permissions -
then this must not cause an error. On the other hand, an error will occur should it be attempted to allocate a task a
priority class not listed here.

Note also that a higher priority process can block a computer.

Software- and Organisations-Service GmbH March 2015

VBScript API 347

See also subprocess. priority_, Task. priority class_and Microsoft® Windows® Scheduling Priorities.

5.19.12 start

Starts the process
Syntax: subprocess. start (String| String[] command line)
Windows immediately detects whether the program cannot be executed. In this case the method returns an error.

On UNIX systems the subprocess. exit code_property is set to 99. Before this is done, the end of the process
must be waited on with subprocess. wait for termination() ..

Shell operators such as | , ss and > are not interpreted. The /bin/sh Or c: \windows\system32\cmd. exe programs
must be used to do this. (Note that the actual paths will depend on the installation.)

This process is started on UNIX systems using execvp() and with CreateProcess() on Windows systems.

5.19.13 terminated

Syntax: Boolean subprocess. terminated

Verifies that a process has ended. Should the process in question have ended, then the subprocess. exit code
and subprocess. termination signal_classes may be called.

5.19.14 termination_signal
Signal with which a process (only on UNIX systems) ends
Syntax: Integer subprocess. termination_signal

Is only called, after subprocess. terminated == true.

5.19.15 timeout

Time limit for a subprocess
Syntax: subprocess. timeout =Double seconds
After the time allowed, the JobScheduler stops the subprocess (UNIX: with sSTGKTLL).

This time limit does not apply to processes running on remote computers with <process class
remote scheduler="">_.

Software- and Organisations-Service GmbH March 2015

http://msdn.microsoft.com/library/en-us/dllproc/base/scheduling_priorities.asp
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/createprocess.asp

VBScript API 348

5.19.16 wait_for_termination

Syntax: subprocess. wait_for_termination ()
Syntax: Boolean subprocess. wait for termination (Double seconds)

Parameters:

second Waiting time. Should this parameter not be specified, then the call will take place after the subprocess
s has ended.

Returned value:
Boolean

true, after a subprocess has ended.
false, should the subprocess continue beyond the waiting time.

5.20 Supervisor_client

This object is returned by spooler. supervisor client_.

Example: in javascript

var supervisor hostname = spooler. supervisor client. hostname;

5.20.1 hostname

The name or IPnumber of the host computer on which the suupervising JobScheduler is running
Syntax: string supervisor_client. hostname

See also <config supervisor="">_,

5.20.2 tcp_port

the TCP port of the supervisor
Syntax: Integer supervisor_client. tcp_port

See also <config supervisor="">_.

5.21 Task

A task is an instance of a job which is currently running.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 349

A task can either be waiting in a job queue or being carried out.

5.21.1 add_pid

Makes an independent, temporary process known to the JobScheduler
Syntax: spooler_task. add_pid (Integer pid, String| Double| Integer timeout (optional))

This call is used to restrict the time allowed for processes that have been launched by a task. The JobScheduler
ends all independent processes still running at the end of a task.

A log entry is made each time the JobScheduler stops a process. This does not affect the state of a task.
The <kill task> method stops all processes for which the add pid() method has been called.

A process group ID can be handed over on Unix systems as a negative pid. ki11 then stops the complete process
group.

This time limit does not apply for processes being run on remote computers with <process class
remote scheduler="">_.

5.21.2 call_me_again_when_locks_available

Repeats spooler_open() or spooler_process() as soon as locks become available
Syntax: spooler_task. call_me_again_when_locks_available ()

Causes the JobScheduler to repeat a call of spooler open() _Or spooler process() _, after an unsuccessful
Task. try hold lock() Or Task.try hold lock non exclusive() _as soon as the locks required are available.
The JobScheduler then repeats the call once it holds the locks, so that the first call (i.e. spooler open()) will be
successful.

After this call, true/false values returned by spooler open() _Or spooler process()_has no effect. The
JobScheduler leaves the state of the Task. order_unchanged.

5.21.3 changed_directories

The directory in which the change which started a task occurred
Syntax: string spooler_task. changed directories

See Job. start when directory changed() , Task. trigger files_.

Returned value:
String

Directory names are to be separated using a semicolon.

»n should no change have occurred in a directory.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 350

5.21.4 create_subprocess

Starts a monitored subprocess

Syntax: _Subprocess_ spooler_task. create_subprocess (String| String[] filename_and_arguments
(optional))

Returned value:
Subprocess_

5.21.5 delay_spooler_process

Delays the next call of spooler process()
Syntax: spooler_task. delay spooler process =Stri ng[Double|Integer seconds _or hhmm ss

Only functions in spooler process() ..

5.21.6 end

Ends a task
Syntax: spooler_task. end ()

The JobScheduler no longer calls the spooler process() _method. Instead the spooler close() _method is
called.

This method call can be used at the end of a task to trigger sending a task log. See Log_.

5.21.7 error
Sets an error and stops the current job
Syntax: spooler_task. error =string

Syntax: Error_ spooler_task. error

This method call returns the last error which has occurred with the current task. Should no error have occurred, an
Error_object is returned, with the is _error property setto false.

An error message can also be written in the task log file using Log. error()

Returned value:
String Error_

Software- and Organisations-Service GmbH March 2015

VBScript API 351

5.21.8 exit_code

Exit-Code
Syntax: spooler_task. exit_code =Integer

Syntax: Integer spooler_task. exit_code

Example: in javascript

spooler log.error("This call of spooler log.error() sets the exit code to 1");
spooler task.exit code = 0; // Reset the exit code

The initial exit-code value is 0 - this is changed to 1 should an error occur. Note that an error is defined here as
occurring when the JobScheduler writes a line in the task log containing "l ERROR] ":

. calling the Log. error() method;
. setting the Task. error_property;
. the script returns an exception.

The job can then set the Task. exit code_property - e.g. in the spooler on error() method.

The exit code resulting from an operating system process executing a task is not relevant here and, in contrast to
jobs with <process> Or <script language="shell">_, is not automatically handed over to this property.

The exit code determines the commands to be subsequently carried out. See <job> <commands on exit code=""
>_for more information.

The exit codes have no influence for API jobs on whether or not a job is stopped (a task error message causes jobs
to be stopped).

5.21.9 history_field

A field in the task history

Syntax: spooler_task. history field (String name) =Variant value

Example: in javascript

spooler task. history field("extra") = 4711;

The database table (see factory. ini _(section [spooler], entry db history table=...)) must have a column with
this name and have been declared in the factory. ini (section] job] , entry history columns=..) file.

5.21.10id

The task identifier
Syntax: Integer spooler task. id

The unique numerical identifier of every task run by a JobScheduler.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 352

5.21.11 job
The job which a task belongs to
Syntax: Job_ spooler_task. job

Returned value:
Job_

5.21.12 order

The current order

Syntax: Order_ spooler_task. order

Example: in javascript
var order = spooler task.order;

spooler log.info("order.id=" + order.id + ", order. title=" + order. title);

Returned value:
Order_

null, should no order exist.

5.21.13 params

The task parameters

Syntax: variable set_ spooler_task. params

Example: in javascript

var value = spooler task. params.value("parameter3");

Example: in javascript

var parameters = spooler task. params;
if(parameters.count > 0) spooler log.info("Parameters given");

var valuel = parameters.value("parameterl");
parameters. value("parameter2");

var value2

A task can have parameters. These parameters can be set using:

. <params>_in the <job>_element in the configuration file;
. Job. start() _and

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 353

. <start job>_.

Returned value:
Variable set_

!'= null

5.21.14 priority
Priority of the Current Task
Syntax: spooler task. priority =Integer

Syntax: Integer spooler task. priority

Example: in javascript

spooler task. priority = +5; // Unix: reduce the priority a little

Unix: The highest priority is -20, the lowest 20. The priority of a task can generally only be reduced and not
increased.

The following priority classes are available on Windows systems 4 "idle", 6 "below normal", 8 "normal", 10
"above normal" and 13 "high" (other values are rounded down). See also Task. priority class_.

Note that an error does not occur, should it not be possible to set the priority of a task.
Note also that a process with a higher priority can block a computer.

The priority of a task can be set independently of the operating system with Task. priority class_.

5.21.15 priority_class
Priority Class of the Current Class
Syntax: spooler_task. priority class =String

Syntax: string spooler_task. priority class

Example: in javascript

spooler task.priority class = "below normal";

The following priority classes can be used to set priorities on Windows and Unix Systems:

Priority Class Windows Unix
"idle" 4 16
"below normal" 6 6
"normal" 8 0

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API

354

"above normal" 10

" hlgh" 13

-16

Note that an error will occur should it be attempted to allocate a task a priority class not listed here.

Note also that a higher priority process can block a computer.

See also Task. priority_, Subprocess. priority class_and Microsoft® Windows® Scheduling Priorities.

5.21.16 remove_pid

The opposite to add_pid()

Syntax: spooler_task. remove_pid (Integer pid)

An error does not occur when the pid has not been added using Task_.

See Task. add pid() _.

5.21.17 repeat

Restarts a task after the specified time

Syntax: spooler_task. repeat =Double

(This method actually belongs to the gob_class and has nothing to do with the task currently being processed.)

Should there be no task belonging to the current job running after the time specified has expired, then the
JobScheduler starts a new task. Note that the <run time>_element is considered here, and that the <period

repeat=""> attribute may be temporarily ignored.

Job. delay after error_has priority, should a task return an error.

5.21.18 stderr_path

The path to the file in which stderr task output is captured

Syntax: string spooler_task. stderr_path

Text in stderr is currently interpreted in the ISO-8859-1 character set.

Returned value:
String

»» should a task not run in a separate <process classes>_process.

Software- and Organisations-Service GmbH

March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://msdn.microsoft.com/library/en-us/dllproc/base/scheduling_priorities.asp

VBScript API 355

5.21.19 stderr_text

Text written to stderr up to this point by the process that was started by the task.
Syntax: string spooler_task. stderr_text
Text in stderr is currently interpreted in the ISO-8859-1 character set.

Returned value:
String

»n should the task not have been started in a separate process <process classes>_.

5.21.20 stdout_path

The path of the file in which stdout task output is captured
Syntax: string spooler_task. stdout_path
Text in stdout is currently interpreted in the ISO-8859-1 character set.

Returned value:
String

»» should a task not run in a separate <process classes>_process.

5.21.21 stdout_text

Text written to stdout up to this point by the process that was started by the task.
Syntax: string spooler_task. stdout_text
Text in stdout is currently interpreted in the ISO-8859-1 character set.

Returned value:
String

»» should a task not run in a separate <process classes>_process.

5.21.22 trigger _files

File paths in folders monitored with regex
Syntax: string spooler_task. trigger files

Returns the file paths from monitored directories (_Job.start when directory changed()_oOr <
start when directory changed>_) at the time a task is started. Only applies to directories for which a regular
expression has been defined (regex).

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 356

The paths are taken from the addresses defined in Job.start when directory changed()_oOr <
start when directory changed>_and combined with the file names.

The non-API <process>_and <script language="shell">_jobs make the content of Task. trigger files
available to the SCHEDULER TASK TRIGGER FILES environment variable.

See Job. start when directory changed() _and Task. changed directories() _.

Returned value:
String

The file paths are separated by semicolons.

v otherwise

5.21.23 try_hold_lock

Try to hold a lock

Syntax: boolean spooler_task. try_hold lock (String lock path)

Example: in javascript

function spooler process()

{

var result = false;
if(spooler task.try hold lock("Georgien") &&
spooler task.try hold lock non exlusive("Venezuela"))

// Task is holding the two locks. Insert processing code here.
result = ...

}

else

{

spooler task.call me again when locks available();

return result;

try lock hold() attempts to retain the lock specified (_Lock), and can be called in:

. spooler open() _: the lock is held for the task being carried out and will be freed after the task has been
completed,

. spooler process() _: the lock is only held for the job step currently being carried out and will be given up
after the step has been completed - i.e. after leaving spooler process() .

When the lock is not available and calling this method returns false then the JobScheduler can be instructed to
either:

. repeat the spooler open() _Or spooler process() _calls as soon as the locks are available using
Task.call me again when locks available() _Or

. end spooler open() OF spooler process() With false, without use of the above-mentioned call, (but with
the expected effect),

. throw a SCHEDULER-469 _warning. This applies for true, which is interpreted as an error.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm?help_URL=scheduler.messages.htm#message_SCHEDULER-469

VBScript API

357

See also <lock. use>_.

Returned value:
boolean

true, when the task retains the lock.

5.21.24 try_hold_lock_non_exclusive

Tries to acquire a non-exclusive lock

Syntax: boolean spooler_task. try_hold lock non_exclusive (String lock path)

The same prerequisites apply as to Task. try hold lock() ..

See <lock. use exclusive="no">..

Returned value:
boolean

true, if the task successfully acquired the lock.

5.21.25 web_service

The Web Service which a task has been allocated to.

Syntax: Web service_ spooler_task. web_service

This property causes an exception when a task has not been allocated to a Web Service.

See also Task. web service or null .

Returned value:
Web service_

5.21.26 web_service_or_null
The Web Service to which a task has been allocated, or nu11.
Syntax: Web service_ spooler_task. web_service or_null

See also Task. web service._.

Returned value:
Web service_

Software- and Organisations-Service GmbH

March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 358

5.22 Variable_set - A Variable_set may be used to pass parameters

Variable_set is used for the JobScheduler variables and task parameters. A new Variable_set is created using
Spooler. create variable set() ..

Variable names are case independent.

The value of a variable is known as a variant in the COM interface (JavaScript, VBScript, Perl). Because variables
are usually written in the JobScheduler database, only variant types which can be converted into strings should be
used here.

The value of a variable in Java is a string. Therefore, a string value is returned when reading this variable, when it
is set as a variant in the COM interface. Nul11l and Empty are returned as null. An error is caused should the value
of a variant not be convertible.

5.22.1 count

The number of variables

Syntax: Integer Vvariable_set. count

5.22.2 merge

Merges with values from another Variable_set
Syntax: variable_set. merge (Variable set vs)

Variables with the same name are overwritten.

5.22.3 names

The separation of variable names by semicolons

Syntax: string variable set. names

Example: in javascript

var variable set = spooler.create variable set();

spooler log.info('"' + variable set.names + '"'); /) ==>""
variable set("variable 1") = "edno";

variable set("variable 2") = "dwa";

spooler log.info('"' + variable set.names + '"'); /] ==>

"variable 1;variable 2"

var names = variable set.names.split(";");
for(var i in names) spooler log.info(names[i] + "=" + variable set(names[i]));

Software- and Organisations-Service GmbH March 2015

VBScript API 359

Returned value:
String

All variable names should be separated by semicolons.

5.22.4 set_var

Sets a variable

Syntax: variable_set. set_var (String name, Variant value)

5.22.5 substitute

Replaces $-Variables in a String

Syntax: string variable_set. substitute (String sustitution string)

Example: in javascript

subprocess. start(subprocess. env.substitute("${MY HOME}/my program"));

In the example below, the subprocess. env_method is used.

References in the string in the form $ name and ${ name} are replaced by variables.

Returned value:
String

The string containing the substituted $ variables.

5.22.6 value

A variable
Syntax: variable_set. value (String name) =Variant value
Syntax: variant variable_set. value (String name)

Parameters:

name

value empty, should a variable not exist.

Returned value:
Variant

empty, should a variable not exist.

Software- and Organisations-Service GmbH March 2015

VBScript API

360

5.22.7 var

A variable

Syntax: variable_set. var (String name) =Variant value

Syntax: variant variable_set. var (String name)

Use the variable set. value_, which is available in all languages.

Parameters:

name

value empty, should a variable not exist.

Returned value:
Variant

empty, should a variable not exist.

5.22.8 xml
Variable set as an XML document
Syntax: variable_set. xml =String

Syntax: string variable_set. xml

Example: in javascript

sos. spooler. variable set/>

variable set.xml= "<?xml version='1.0'?>"
"<params>" +

var variable set = spooler.create variable set();
spooler log.info(variable set.xml); // Liefert <?xml version='1l.0'?><

"<param name='surname' value='Meier'/>" +
"<param name='christian name' value='Hans'/>" +

"</params>";
spooler log.info(variable set.xml);
spooler log.info("nachname=" + variable set.value("surname"));
spooler log.info("vorname =" + variable set.value("christian name"));

+

See <sos. spooler. variable set>_, <params>_.

Parameters:

XML document as a string. Returns <

sos. spooler. variable set>_. When setting this
property to an XML value, then the name of the root
element is ignored; <params>_or <

sos. spooler. variable set>_may be returned.

Software- and Organisations-Service GmbH

March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 361

Returned value:
String

XML document as a string. Returns <sos. spooler. variable set>_. When setting this property to an XML value,
then the name of the root element is ignored; <params>_0Or <sos. spooler. variable set>_may be returned.

5.23 Web_service

See also <web service>

5.23.1 forward_xslt_stylesheet_path

Path to the forwarding XSLT stylesheets
Syntax: string web_service. forward xslt_stylesheet path

See also <web service forward xslt stylesheet="">

5.23.2 name

The Name of the JobScheduler Web Service
Syntax: string web_service. name

See also <web service name="">

5.23.3 params

Freely definable parameters

Syntax: variable set_ web_service. params

The Web Services parameters can be set using the <web service>_element.

Returned value:
Variable set_

5.24 Web_service operation

See also <web service>

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm
http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API 362

5.24.1 peer_hostname

Peer (Remote) Host Name

Syntax: string web_service_operation. peer_hostname

Returned value:
String

»» should it not be possible to determine the name.

5.24.2 peer_ip

Peer (Remote) IP Address

Syntax: string web_service_operation. peer_ip

5.24 .3 request

Requests

Syntax: Web service request_ Web_service operation. request

Returned value:
Web service request_

5.24 4 response

Answers

Syntax: Web service response_ Web_service_operation. response

Returned value:
Web service response_

5.24.5 web_service

Syntax: Web service_ Web_service_operation. web_service

Returned value:

Software- and Organisations-Service GmbH March 2015

VBScript API 363

Web service_

5.25 Web_service_request

See Web service operation..

5.25.1 binary_content

Payload as a Byte Array (Java only)

Syntax: web_service_request. binary_content
This property is only available under Java.

The ("Content-Type") header field is used to inform the client how binary content is to be interpreted (see
HTTP/1.1 14.17 Content-Type) and Wweb _service request.charset name_).

5.25.2 charset_name

Character Set

Syntax: string web_service_request. charset_name

Example: in javascript

var request = spooler task.order. web service operation. request;

spooler log.info(request. header("Content-Type")); // ==> text/xml; charset=utf-8
spooler log.info(request.content type); // ==> text/xml

spooler log.info(request.charset name); // ==> utf-8

Returns the charset= parameter from the content-Type: header entry.

5.25.3 content_type
Content Type (without parameters)
Syntax: string web_service_request. content_type

Returns the content-Type: header entry, without parameters - e.g. "text/plain".

Software- and Organisations-Service GmbH March 2015

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17

VBScript API

364

5.25.4 header

Header Entries

Syntax: string web_service request. header (String name)

Example: in javascript

spooler log.info("Content-Type: " +

spooler task. order. web service operation. request. header(

"Content-Type"

)

)i

Parameters:
name Case is not relevant.

Returned value:
String

Returns " in event of an unrecognized entry.

5.25.5 string_content

Payload as Text

Syntax: string web_service_request. string content

The character set to be used is taken from the charset parameter in the headers("Content-Type") (see
HTTP/1.1 14.17 Content-Type). ISO-8859-1 will be used as default, should this parameter not be specified.

The following character sets are recognized:
. ISO-8859-1

. UTF-8 (only on Windows systems and restricted to the ISO-8859-1 characters)

See also Web service request. binary content._.

5.25.6 url

Uniform Resource Locator
Syntax: string web_service_request. url

url = "http: //" + header("Host") + url_path

5.26 Web_service _response

Note that the binary content property is only available under Java.

Software- and Organisations-Service GmbH

March 2015

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17

VBScript API 365

See also <web service>

5.26.1 charset_name

Character set

Syntax: string web_service_response. charset name

Example: in javascript

var request = spooler task.order. web service operation. request;

spooler log. info(request. header("Content-Type")); // ==> text/xml; charset=utf-8
spooler log. info(request.content type); // ==> text/xml

spooler log. info(request.charset name); // ==> utf-8

Reads the charset= parameter from the Content-Type: header entry.

5.26.2 content_type
Content-Type (without parameters)
Syntax: string web_service_response. content_type

Reads the content-Type: header without any of the other associated parameters such as charset=.

5.26.3 header
Header Entries
Syntax: web_service_response. header (String name) =String value

Syntax: string web_service_response. header (String name)

Example: in javascript

spooler log.info("Content-Type: " +
spooler task.order. web service operation. response. header("Content-Type"));

Parameters:
value »n js used for unknown entries.
name The case in which entries are written is not relevant here.

Returned value:
String

v js used for unknown entries.

Software- and Organisations-Service GmbH March 2015

http://www.sos-berlin.com/doc/en/scheduler/sos_help.htm

VBScript API

366

5.26.4 send

Sends a Reply

Syntax: web_service_response. send ()

5.26.5 status_code

HTTP Status Code

Syntax: web_service_response. status_code =Integer

The default setting is 200 (OK).

5.26.6 string_content

Text payloads

Syntax: web_service_response. string content =String text

Example: in javascript

var response = spooler task.order.web service operation. response;
response.
response.
response.
response.

content type = "text/plain";

charset name = "iso-8859-1";

string content = "This is the answer";
send() ;

The header("Content-Type") must first of all contain a charset parameter such as:

header("Content-Type") = "text/plain; charset=iso-8859-1";

Text is coded as specified in the charset parameter. ISO-8859-1 will be used as th

parameter not be specified.

See Web service request. string content for the character sets which are allowed.

See Web service response. charset name_.

5.27 Xslt_stylesheet

e default value, should this

An XSLT style sheet contains the instructions for the transformation of an XML document.

Software- and Organisations-Service GmbH

March 2015

VBScript API 367

The XSLT processor is implemented with libxsit .

5.27.1 apply_xml

Applies a style sheet to an XML document.

Syntax: string X. apply_xml (String xml)

5.27.2 close

Frees the style sheet resources

Syntax: X. close ()

5.27.3 load_file

Loads the style sheet from an XML file

Syntax: X. load _file (String path)

5.27.4 load_xml

Loads the style sheet from an XML document

Syntax: X. load_xml (String xml)

Software- and Organisations-Service GmbH March 2015

http://xmlsoft.org/XSLT/

Index

368

Index

C
-cd 78, 164, 249, 335

D
Debugger 85, 171, 256, 342
Directory 78, 164, 249, 335

E

Eclipse 85, 171, 256, 342
-exclusive 83, 83, 169, 169, 255,
255, 340, 340

I

-id 79, 165, 250, 336

-include-path 29, 79, 115, 165, 200,
250, 286, 336

-ini 80, 165, 251, 336

L

-log-dir 76, 81, 85, 162, 167, 171,
247, 253, 256, 333, 338, 342
-log-level 47, 133, 218, 304

P
-param 82, 168, 253, 339

-
-tcp-port 83, 169, 254, 340

U
-udp-port 84, 170, 255, 341

W
Working Directory 78, 164, 249, 335

Software- and Organisations-Service GmbH

March 2015

	1 Overview
	2 Java API
	2.1 Error
	2.1.1 code
	2.1.2 is_error
	2.1.3 text

	2.2 Job
	2.2.1 clear_delay_after_error
	2.2.2 clear_when_directory_changed
	2.2.3 configuration_directory
	2.2.4 delay_after_error
	2.2.5 delay_order_after_setback
	2.2.6 folder_path
	2.2.7 include_path
	2.2.8 max_order_setbacks
	2.2.9 name
	2.2.10 order_queue
	2.2.11 process_class
	2.2.12 remove
	2.2.13 start
	2.2.14 start_when_directory_changed
	2.2.15 state_text
	2.2.16 title
	2.2.17 wake

	2.3 Job_chain -
 job chains for order processing

	2.3.1 add_end_state
	2.3.2 add_job
	2.3.3 add_or_replace_order
	2.3.4 add_order
	2.3.5 name
	2.3.6 node
	2.3.7 order_count
	2.3.8 order_queue
	2.3.9 orders_recoverable
	2.3.10 remove
	2.3.11 title

	2.4 Job_chain_node
	2.4.1 action
	2.4.2 error_node
	2.4.3 error_state
	2.4.4 job
	2.4.5 next_node
	2.4.6 next_state
	2.4.7 state

	2.5 Job_impl -
 Super Class for a Job or the JobScheduler Script

	2.5.1 spooler
	2.5.2 spooler_close
	2.5.3 spooler_exit
	2.5.4 spooler_init
	2.5.5 spooler_job
	2.5.6 spooler_log
	2.5.7 spooler_on_error
	2.5.8 spooler_on_success
	2.5.9 spooler_open
	2.5.10 spooler_process
	2.5.11 spooler_task

	2.6 Lock
	2.6.1 max_non_exclusive
	2.6.2 name
	2.6.3 remove

	2.7 Locks
	2.7.1 add_lock
	2.7.2 create_lock
	2.7.3 lock
	2.7.4 lock_or_null

	2.8 Log -
 Logging

	2.8.1 debug
	2.8.2 debug1
	2.8.3 debug2
	2.8.4 debug3
	2.8.5 debug4
	2.8.6 debug5
	2.8.7 debug6
	2.8.8 debug7
	2.8.9 debug8
	2.8.10 debug9
	2.8.11 error
	2.8.12 filename
	2.8.13 info
	2.8.14 last
	2.8.15 last_error_line
	2.8.16 level
	2.8.17 log
	2.8.18 log_file
	2.8.19 mail
	2.8.20 mail_it
	2.8.21 mail_on_error
	2.8.22 mail_on_process
	2.8.23 mail_on_success
	2.8.24 mail_on_warning
	2.8.25 new_filename
	2.8.26 start_new_file
	2.8.27 warn

	2.9 Mail -
 e-mail dispatch

	2.9.1 add_file
	2.9.2 add_header_field
	2.9.3 bcc
	2.9.4 body
	2.9.5 cc
	2.9.6 dequeue
	2.9.7 dequeue_log
	2.9.8 from
	2.9.9 queue_dir
	2.9.10 smtp
	2.9.11 subject
	2.9.12 to
	2.9.13 xslt_stylesheet
	2.9.14 xslt_stylesheet_path

	2.10 Monitor_impl -
 Using Super Classes for Start Scripts or Jobs

	2.10.1 spooler
	2.10.2 spooler_job
	2.10.3 spooler_log
	2.10.4 spooler_process_after
	2.10.5 spooler_process_before
	2.10.6 spooler_task
	2.10.7 spooler_task_after
	2.10.8 spooler_task_before

	2.11 Order -
 Order

	2.11.1 at
	2.11.2 end_state
	2.11.3 id
	2.11.4 job_chain
	2.11.5 job_chain_node
	2.11.6 log
	2.11.7 params
	2.11.8 payload
	2.11.9 payload_is_type
	2.11.10 priority
	2.11.11 remove_from_job_chain
	2.11.12 run_time
	2.11.13 setback
	2.11.14 setback_count
	2.11.15 state
	2.11.16 state_text
	2.11.17 string_next_start_time
	2.11.18 suspended
	2.11.19 title
	2.11.20 web_service
	2.11.21 web_service_operation
	2.11.22 web_service_operation_or_null
	2.11.23 web_service_or_null
	2.11.24 xml
	2.11.25 xml_payload

	2.12 Order_queue -
 The order queue for an order controlled job

	2.12.1 length

	2.13 Process_class
	2.13.1 max_processes
	2.13.2 name
	2.13.3 remote_scheduler
	2.13.4 remove

	2.14 Process_classes
	2.14.1 add_process_class
	2.14.2 create_process_class
	2.14.3 process_class
	2.14.4 process_class_or_null

	2.15 Run_time - Managing Time Slots and Starting Times
	2.15.1 schedule
	2.15.2 xml

	2.16 Schedule - Runtime
	2.16.1 xml

	2.17 Spooler
	2.17.1 abort_immediately
	2.17.2 abort_immediately_and_restart
	2.17.3 add_job_chain
	2.17.4 configuration_directory
	2.17.5 create_job_chain
	2.17.6 create_order
	2.17.7 create_variable_set
	2.17.8 create_xslt_stylesheet
	2.17.9 db_history_table_name
	2.17.10 db_name
	2.17.11 db_order_history_table_name
	2.17.12 db_orders_table_name
	2.17.13 db_tasks_table_name
	2.17.14 db_variables_table_name
	2.17.15 directory
	2.17.16 execute_xml
	2.17.17 hostname
	2.17.18 id
	2.17.19 include_path
	2.17.20 ini_path
	2.17.21 is_service
	2.17.22 job
	2.17.23 job_chain
	2.17.24 job_chain_exists
	2.17.25 let_run_terminate_and_restart
	2.17.26 locks
	2.17.27 log
	2.17.28 log_dir
	2.17.29 param
	2.17.30 process_classes
	2.17.31 schedule
	2.17.32 supervisor_client
	2.17.33 tcp_port
	2.17.34 terminate
	2.17.35 terminate_and_restart
	2.17.36 udp_port
	2.17.37 var
	2.17.38 variables

	2.18 Spooler_program -
 Debugging Jobs in Java

	2.19 Subprocess
	2.19.1 close
	2.19.2 env
	2.19.3 environment
	2.19.4 exit_code
	2.19.5 ignore_error
	2.19.6 ignore_signal
	2.19.7 kill
	2.19.8 own_process_group
	2.19.9 pid
	2.19.10 priority
	2.19.11 priority_class
	2.19.12 start
	2.19.13 terminated
	2.19.14 termination_signal
	2.19.15 timeout
	2.19.16 wait_for_termination

	2.20 Supervisor_client
	2.20.1 hostname
	2.20.2 tcp_port

	2.21 Task
	2.21.1 add_pid
	2.21.2 call_me_again_when_locks_available
	2.21.3 changed_directories
	2.21.4 create_subprocess
	2.21.5 delay_spooler_process
	2.21.6 end
	2.21.7 error
	2.21.8 exit_code
	2.21.9 history_field
	2.21.10 id
	2.21.11 job
	2.21.12 order
	2.21.13 params
	2.21.14 priority
	2.21.15 priority_class
	2.21.16 remove_pid
	2.21.17 repeat
	2.21.18 stderr_path
	2.21.19 stderr_text
	2.21.20 stdout_path
	2.21.21 stdout_text
	2.21.22 trigger_files
	2.21.23 try_hold_lock
	2.21.24 try_hold_lock_non_exclusive
	2.21.25 web_service
	2.21.26 web_service_or_null

	2.22 Variable_set -
 A Variable_set may be used to pass parameters

	2.22.1 count
	2.22.2 merge
	2.22.3 names
	2.22.4 substitute
	2.22.5 value
	2.22.6 var
	2.22.7 xml

	2.23 Web_service
	2.23.1 forward_xslt_stylesheet_path
	2.23.2 name
	2.23.3 params

	2.24 Web_service_operation
	2.24.1 peer_hostname
	2.24.2 peer_ip
	2.24.3 request
	2.24.4 response
	2.24.5 web_service

	2.25 Web_service_request
	2.25.1 binary_content
	2.25.2 charset_name
	2.25.3 content_type
	2.25.4 header
	2.25.5 string_content
	2.25.6 url

	2.26 Web_service_response
	2.26.1 charset_name
	2.26.2 content_type
	2.26.3 header
	2.26.4 send
	2.26.5 status_code
	2.26.6 string_content

	2.27 Xslt_stylesheet
	2.27.1 apply_xml
	2.27.2 close
	2.27.3 load_file
	2.27.4 load_xml

	3 Javascript API
	3.1 Error
	3.1.1 code
	3.1.2 is_error
	3.1.3 text

	3.2 Job
	3.2.1 clear_delay_after_error
	3.2.2 clear_when_directory_changed
	3.2.3 configuration_directory
	3.2.4 delay_after_error
	3.2.5 delay_order_after_setback
	3.2.6 folder_path
	3.2.7 include_path
	3.2.8 max_order_setbacks
	3.2.9 name
	3.2.10 order_queue
	3.2.11 process_class
	3.2.12 remove
	3.2.13 start
	3.2.14 start_when_directory_changed
	3.2.15 state_text
	3.2.16 title
	3.2.17 wake

	3.3 Job_chain -
 job chains for order processing

	3.3.1 add_end_state
	3.3.2 add_job
	3.3.3 add_or_replace_order
	3.3.4 add_order
	3.3.5 name
	3.3.6 node
	3.3.7 order_count
	3.3.8 order_queue
	3.3.9 orders_recoverable
	3.3.10 remove
	3.3.11 title

	3.4 Job_chain_node
	3.4.1 action
	3.4.2 error_node
	3.4.3 error_state
	3.4.4 job
	3.4.5 next_node
	3.4.6 next_state
	3.4.7 state

	3.5 Job_impl -
 Super Class for a Job or the JobScheduler Script

	3.5.1 spooler
	3.5.2 spooler_close
	3.5.3 spooler_exit
	3.5.4 spooler_init
	3.5.5 spooler_job
	3.5.6 spooler_log
	3.5.7 spooler_on_error
	3.5.8 spooler_on_success
	3.5.9 spooler_open
	3.5.10 spooler_process
	3.5.11 spooler_task

	3.6 Lock
	3.6.1 max_non_exclusive
	3.6.2 name
	3.6.3 remove

	3.7 Locks
	3.7.1 add_lock
	3.7.2 create_lock
	3.7.3 lock
	3.7.4 lock_or_null

	3.8 Log -
 Logging

	3.8.1 debug
	3.8.2 debug1
	3.8.3 debug2
	3.8.4 debug3
	3.8.5 debug4
	3.8.6 debug5
	3.8.7 debug6
	3.8.8 debug7
	3.8.9 debug8
	3.8.10 debug9
	3.8.11 error
	3.8.12 filename
	3.8.13 info
	3.8.14 last
	3.8.15 last_error_line
	3.8.16 level
	3.8.17 log
	3.8.18 log_file
	3.8.19 mail
	3.8.20 mail_it
	3.8.21 mail_on_error
	3.8.22 mail_on_process
	3.8.23 mail_on_success
	3.8.24 mail_on_warning
	3.8.25 new_filename
	3.8.26 start_new_file
	3.8.27 warn

	3.9 Mail -
 e-mail dispatch

	3.9.1 add_file
	3.9.2 add_header_field
	3.9.3 bcc
	3.9.4 body
	3.9.5 cc
	3.9.6 dequeue
	3.9.7 dequeue_log
	3.9.8 from
	3.9.9 queue_dir
	3.9.10 smtp
	3.9.11 subject
	3.9.12 to
	3.9.13 xslt_stylesheet
	3.9.14 xslt_stylesheet_path

	3.10 Monitor_impl -
 Using Super Classes for Start Scripts or Jobs

	3.10.1 spooler
	3.10.2 spooler_job
	3.10.3 spooler_log
	3.10.4 spooler_process_after
	3.10.5 spooler_process_before
	3.10.6 spooler_task
	3.10.7 spooler_task_after
	3.10.8 spooler_task_before

	3.11 Order -
 Order

	3.11.1 at
	3.11.2 end_state
	3.11.3 id
	3.11.4 job_chain
	3.11.5 job_chain_node
	3.11.6 log
	3.11.7 params
	3.11.8 payload
	3.11.9 payload_is_type
	3.11.10 priority
	3.11.11 remove_from_job_chain
	3.11.12 run_time
	3.11.13 setback
	3.11.14 setback_count
	3.11.15 state
	3.11.16 state_text
	3.11.17 string_next_start_time
	3.11.18 suspended
	3.11.19 title
	3.11.20 web_service
	3.11.21 web_service_operation
	3.11.22 web_service_operation_or_null
	3.11.23 web_service_or_null
	3.11.24 xml
	3.11.25 xml_payload

	3.12 Order_queue -
 The order queue for an order controlled job

	3.12.1 length

	3.13 Process_class
	3.13.1 max_processes
	3.13.2 name
	3.13.3 remote_scheduler
	3.13.4 remove

	3.14 Process_classes
	3.14.1 add_process_class
	3.14.2 create_process_class
	3.14.3 process_class
	3.14.4 process_class_or_null

	3.15 Run_time - Managing Time Slots and Starting Times
	3.15.1 schedule
	3.15.2 xml

	3.16 Schedule - Runtime
	3.16.1 xml

	3.17 Spooler
	3.17.1 abort_immediately
	3.17.2 abort_immediately_and_restart
	3.17.3 add_job_chain
	3.17.4 configuration_directory
	3.17.5 create_job_chain
	3.17.6 create_order
	3.17.7 create_variable_set
	3.17.8 create_xslt_stylesheet
	3.17.9 db_history_table_name
	3.17.10 db_name
	3.17.11 db_order_history_table_name
	3.17.12 db_orders_table_name
	3.17.13 db_tasks_table_name
	3.17.14 db_variables_table_name
	3.17.15 directory
	3.17.16 execute_xml
	3.17.17 hostname
	3.17.18 id
	3.17.19 include_path
	3.17.20 ini_path
	3.17.21 is_service
	3.17.22 job
	3.17.23 job_chain
	3.17.24 job_chain_exists
	3.17.25 let_run_terminate_and_restart
	3.17.26 locks
	3.17.27 log
	3.17.28 log_dir
	3.17.29 param
	3.17.30 process_classes
	3.17.31 schedule
	3.17.32 supervisor_client
	3.17.33 tcp_port
	3.17.34 terminate
	3.17.35 terminate_and_restart
	3.17.36 udp_port
	3.17.37 variables

	3.18 Spooler_program -
 Debugging Jobs in Java

	3.19 Subprocess
	3.19.1 close
	3.19.2 env
	3.19.3 environment
	3.19.4 exit_code
	3.19.5 ignore_error
	3.19.6 ignore_signal
	3.19.7 kill
	3.19.8 own_process_group
	3.19.9 pid
	3.19.10 priority
	3.19.11 priority_class
	3.19.12 start
	3.19.13 terminated
	3.19.14 termination_signal
	3.19.15 timeout
	3.19.16 wait_for_termination

	3.20 Supervisor_client
	3.20.1 hostname
	3.20.2 tcp_port

	3.21 Task
	3.21.1 add_pid
	3.21.2 call_me_again_when_locks_available
	3.21.3 changed_directories
	3.21.4 create_subprocess
	3.21.5 delay_spooler_process
	3.21.6 end
	3.21.7 error
	3.21.8 exit_code
	3.21.9 history_field
	3.21.10 id
	3.21.11 job
	3.21.12 order
	3.21.13 params
	3.21.14 priority
	3.21.15 priority_class
	3.21.16 remove_pid
	3.21.17 repeat
	3.21.18 stderr_path
	3.21.19 stderr_text
	3.21.20 stdout_path
	3.21.21 stdout_text
	3.21.22 trigger_files
	3.21.23 try_hold_lock
	3.21.24 try_hold_lock_non_exclusive
	3.21.25 web_service
	3.21.26 web_service_or_null

	3.22 Variable_set -
 A Variable_set may be used to pass parameters

	3.22.1 count
	3.22.2 merge
	3.22.3 names
	3.22.4 set_var
	3.22.5 substitute
	3.22.6 value
	3.22.7 xml

	3.23 Web_service
	3.23.1 forward_xslt_stylesheet_path
	3.23.2 name
	3.23.3 params

	3.24 Web_service_operation
	3.24.1 peer_hostname
	3.24.2 peer_ip
	3.24.3 request
	3.24.4 response
	3.24.5 web_service

	3.25 Web_service_request
	3.25.1 binary_content
	3.25.2 charset_name
	3.25.3 content_type
	3.25.4 header
	3.25.5 string_content
	3.25.6 url

	3.26 Web_service_response
	3.26.1 charset_name
	3.26.2 content_type
	3.26.3 header
	3.26.4 send
	3.26.5 status_code
	3.26.6 string_content

	3.27 Xslt_stylesheet
	3.27.1 apply_xml
	3.27.2 close
	3.27.3 load_file
	3.27.4 load_xml

	4 Perl API
	4.1 Error
	4.1.1 code
	4.1.2 is_error
	4.1.3 text

	4.2 Job
	4.2.1 clear_delay_after_error
	4.2.2 clear_when_directory_changed
	4.2.3 configuration_directory
	4.2.4 delay_after_error
	4.2.5 delay_order_after_setback
	4.2.6 folder_path
	4.2.7 include_path
	4.2.8 max_order_setbacks
	4.2.9 name
	4.2.10 order_queue
	4.2.11 process_class
	4.2.12 remove
	4.2.13 start
	4.2.14 start_when_directory_changed
	4.2.15 state_text
	4.2.16 title
	4.2.17 wake

	4.3 Job_chain -
 job chains for order processing

	4.3.1 add_end_state
	4.3.2 add_job
	4.3.3 add_or_replace_order
	4.3.4 add_order
	4.3.5 name
	4.3.6 node
	4.3.7 order_count
	4.3.8 order_queue
	4.3.9 orders_recoverable
	4.3.10 remove
	4.3.11 title

	4.4 Job_chain_node
	4.4.1 action
	4.4.2 error_node
	4.4.3 error_state
	4.4.4 job
	4.4.5 next_node
	4.4.6 next_state
	4.4.7 state

	4.5 Job_impl -
 Super Class for a Job or the JobScheduler Script

	4.5.1 spooler
	4.5.2 spooler_close
	4.5.3 spooler_exit
	4.5.4 spooler_init
	4.5.5 spooler_job
	4.5.6 spooler_log
	4.5.7 spooler_on_error
	4.5.8 spooler_on_success
	4.5.9 spooler_open
	4.5.10 spooler_process
	4.5.11 spooler_task

	4.6 Lock
	4.6.1 max_non_exclusive
	4.6.2 name
	4.6.3 remove

	4.7 Locks
	4.7.1 add_lock
	4.7.2 create_lock
	4.7.3 lock
	4.7.4 lock_or_null

	4.8 Log -
 Logging

	4.8.1 debug
	4.8.2 debug1
	4.8.3 debug2
	4.8.4 debug3
	4.8.5 debug4
	4.8.6 debug5
	4.8.7 debug6
	4.8.8 debug7
	4.8.9 debug8
	4.8.10 debug9
	4.8.11 error
	4.8.12 filename
	4.8.13 info
	4.8.14 last
	4.8.15 last_error_line
	4.8.16 level
	4.8.17 log
	4.8.18 log_file
	4.8.19 mail
	4.8.20 mail_it
	4.8.21 mail_on_error
	4.8.22 mail_on_process
	4.8.23 mail_on_success
	4.8.24 mail_on_warning
	4.8.25 new_filename
	4.8.26 start_new_file
	4.8.27 warn

	4.9 Mail -
 e-mail dispatch

	4.9.1 add_file
	4.9.2 add_header_field
	4.9.3 bcc
	4.9.4 body
	4.9.5 cc
	4.9.6 dequeue
	4.9.7 dequeue_log
	4.9.8 from
	4.9.9 queue_dir
	4.9.10 smtp
	4.9.11 subject
	4.9.12 to
	4.9.13 xslt_stylesheet
	4.9.14 xslt_stylesheet_path

	4.10 Monitor_impl -
 Using Super Classes for Start Scripts or Jobs

	4.10.1 spooler
	4.10.2 spooler_job
	4.10.3 spooler_log
	4.10.4 spooler_process_after
	4.10.5 spooler_process_before
	4.10.6 spooler_task
	4.10.7 spooler_task_after
	4.10.8 spooler_task_before

	4.11 Order -
 Order

	4.11.1 at
	4.11.2 end_state
	4.11.3 id
	4.11.4 job_chain
	4.11.5 job_chain_node
	4.11.6 log
	4.11.7 params
	4.11.8 payload
	4.11.9 payload_is_type
	4.11.10 priority
	4.11.11 remove_from_job_chain
	4.11.12 run_time
	4.11.13 setback
	4.11.14 setback_count
	4.11.15 state
	4.11.16 state_text
	4.11.17 string_next_start_time
	4.11.18 suspended
	4.11.19 title
	4.11.20 web_service
	4.11.21 web_service_operation
	4.11.22 web_service_operation_or_null
	4.11.23 web_service_or_null
	4.11.24 xml
	4.11.25 xml_payload

	4.12 Order_queue -
 The order queue for an order controlled job

	4.12.1 length

	4.13 Process_class
	4.13.1 max_processes
	4.13.2 name
	4.13.3 remote_scheduler
	4.13.4 remove

	4.14 Process_classes
	4.14.1 add_process_class
	4.14.2 create_process_class
	4.14.3 process_class
	4.14.4 process_class_or_null

	4.15 Run_time - Managing Time Slots and Starting Times
	4.15.1 schedule
	4.15.2 xml

	4.16 Schedule - Runtime
	4.16.1 xml

	4.17 Spooler
	4.17.1 abort_immediately
	4.17.2 abort_immediately_and_restart
	4.17.3 add_job_chain
	4.17.4 configuration_directory
	4.17.5 create_job_chain
	4.17.6 create_order
	4.17.7 create_variable_set
	4.17.8 create_xslt_stylesheet
	4.17.9 db_history_table_name
	4.17.10 db_name
	4.17.11 db_order_history_table_name
	4.17.12 db_orders_table_name
	4.17.13 db_tasks_table_name
	4.17.14 db_variables_table_name
	4.17.15 directory
	4.17.16 execute_xml
	4.17.17 hostname
	4.17.18 id
	4.17.19 include_path
	4.17.20 ini_path
	4.17.21 is_service
	4.17.22 job
	4.17.23 job_chain
	4.17.24 job_chain_exists
	4.17.25 let_run_terminate_and_restart
	4.17.26 locks
	4.17.27 log
	4.17.28 log_dir
	4.17.29 param
	4.17.30 process_classes
	4.17.31 schedule
	4.17.32 supervisor_client
	4.17.33 tcp_port
	4.17.34 terminate
	4.17.35 terminate_and_restart
	4.17.36 udp_port
	4.17.37 var
	4.17.38 variables

	4.18 Spooler_program -
 Debugging Jobs in Java

	4.19 Subprocess
	4.19.1 close
	4.19.2 env
	4.19.3 environment
	4.19.4 exit_code
	4.19.5 ignore_error
	4.19.6 ignore_signal
	4.19.7 kill
	4.19.8 own_process_group
	4.19.9 pid
	4.19.10 priority
	4.19.11 priority_class
	4.19.12 start
	4.19.13 terminated
	4.19.14 termination_signal
	4.19.15 timeout
	4.19.16 wait_for_termination

	4.20 Supervisor_client
	4.20.1 hostname
	4.20.2 tcp_port

	4.21 Task
	4.21.1 add_pid
	4.21.2 call_me_again_when_locks_available
	4.21.3 changed_directories
	4.21.4 create_subprocess
	4.21.5 delay_spooler_process
	4.21.6 end
	4.21.7 error
	4.21.8 exit_code
	4.21.9 history_field
	4.21.10 id
	4.21.11 job
	4.21.12 order
	4.21.13 params
	4.21.14 priority
	4.21.15 priority_class
	4.21.16 remove_pid
	4.21.17 repeat
	4.21.18 stderr_path
	4.21.19 stderr_text
	4.21.20 stdout_path
	4.21.21 stdout_text
	4.21.22 trigger_files
	4.21.23 try_hold_lock
	4.21.24 try_hold_lock_non_exclusive
	4.21.25 web_service
	4.21.26 web_service_or_null

	4.22 Variable_set -
 A Variable_set may be used to pass parameters

	4.22.1 count
	4.22.2 merge
	4.22.3 names
	4.22.4 set_var
	4.22.5 substitute
	4.22.6 value
	4.22.7 var
	4.22.8 xml

	4.23 Web_service
	4.23.1 forward_xslt_stylesheet_path
	4.23.2 name
	4.23.3 params

	4.24 Web_service_operation
	4.24.1 peer_hostname
	4.24.2 peer_ip
	4.24.3 request
	4.24.4 response
	4.24.5 web_service

	4.25 Web_service_request
	4.25.1 binary_content
	4.25.2 charset_name
	4.25.3 content_type
	4.25.4 header
	4.25.5 string_content
	4.25.6 url

	4.26 Web_service_response
	4.26.1 charset_name
	4.26.2 content_type
	4.26.3 header
	4.26.4 send
	4.26.5 status_code
	4.26.6 string_content

	4.27 Xslt_stylesheet
	4.27.1 apply_xml
	4.27.2 close
	4.27.3 load_file
	4.27.4 load_xml

	5 VBScript API
	5.1 Error
	5.1.1 code
	5.1.2 is_error
	5.1.3 text

	5.2 Job
	5.2.1 clear_delay_after_error
	5.2.2 clear_when_directory_changed
	5.2.3 configuration_directory
	5.2.4 delay_after_error
	5.2.5 delay_order_after_setback
	5.2.6 folder_path
	5.2.7 include_path
	5.2.8 max_order_setbacks
	5.2.9 name
	5.2.10 order_queue
	5.2.11 process_class
	5.2.12 remove
	5.2.13 start
	5.2.14 start_when_directory_changed
	5.2.15 state_text
	5.2.16 title
	5.2.17 wake

	5.3 Job_chain -
 job chains for order processing

	5.3.1 add_end_state
	5.3.2 add_job
	5.3.3 add_or_replace_order
	5.3.4 add_order
	5.3.5 name
	5.3.6 node
	5.3.7 order_count
	5.3.8 order_queue
	5.3.9 orders_recoverable
	5.3.10 remove
	5.3.11 title

	5.4 Job_chain_node
	5.4.1 action
	5.4.2 error_node
	5.4.3 error_state
	5.4.4 job
	5.4.5 next_node
	5.4.6 next_state
	5.4.7 state

	5.5 Job_impl -
 Super Class for a Job or the JobScheduler Script

	5.5.1 spooler
	5.5.2 spooler_close
	5.5.3 spooler_exit
	5.5.4 spooler_init
	5.5.5 spooler_job
	5.5.6 spooler_log
	5.5.7 spooler_on_error
	5.5.8 spooler_on_success
	5.5.9 spooler_open
	5.5.10 spooler_process
	5.5.11 spooler_task

	5.6 Lock
	5.6.1 max_non_exclusive
	5.6.2 name
	5.6.3 remove

	5.7 Locks
	5.7.1 add_lock
	5.7.2 create_lock
	5.7.3 lock
	5.7.4 lock_or_null

	5.8 Log -
 Logging

	5.8.1 debug
	5.8.2 debug1
	5.8.3 debug2
	5.8.4 debug3
	5.8.5 debug4
	5.8.6 debug5
	5.8.7 debug6
	5.8.8 debug7
	5.8.9 debug8
	5.8.10 debug9
	5.8.11 error
	5.8.12 filename
	5.8.13 info
	5.8.14 last
	5.8.15 last_error_line
	5.8.16 level
	5.8.17 log
	5.8.18 log_file
	5.8.19 mail
	5.8.20 mail_it
	5.8.21 mail_on_error
	5.8.22 mail_on_process
	5.8.23 mail_on_success
	5.8.24 mail_on_warning
	5.8.25 new_filename
	5.8.26 start_new_file
	5.8.27 warn

	5.9 Mail -
 e-mail dispatch

	5.9.1 add_file
	5.9.2 add_header_field
	5.9.3 bcc
	5.9.4 body
	5.9.5 cc
	5.9.6 dequeue
	5.9.7 dequeue_log
	5.9.8 from
	5.9.9 queue_dir
	5.9.10 smtp
	5.9.11 subject
	5.9.12 to
	5.9.13 xslt_stylesheet
	5.9.14 xslt_stylesheet_path

	5.10 Monitor_impl -
 Using Super Classes for Start Scripts or Jobs

	5.10.1 spooler
	5.10.2 spooler_job
	5.10.3 spooler_log
	5.10.4 spooler_process_after
	5.10.5 spooler_process_before
	5.10.6 spooler_task
	5.10.7 spooler_task_after
	5.10.8 spooler_task_before

	5.11 Order -
 Order

	5.11.1 at
	5.11.2 end_state
	5.11.3 id
	5.11.4 job_chain
	5.11.5 job_chain_node
	5.11.6 log
	5.11.7 params
	5.11.8 payload
	5.11.9 payload_is_type
	5.11.10 priority
	5.11.11 remove_from_job_chain
	5.11.12 run_time
	5.11.13 setback
	5.11.14 setback_count
	5.11.15 state
	5.11.16 state_text
	5.11.17 string_next_start_time
	5.11.18 suspended
	5.11.19 title
	5.11.20 web_service
	5.11.21 web_service_operation
	5.11.22 web_service_operation_or_null
	5.11.23 web_service_or_null
	5.11.24 xml
	5.11.25 xml_payload

	5.12 Order_queue -
 The order queue for an order controlled job

	5.12.1 length

	5.13 Process_class
	5.13.1 max_processes
	5.13.2 name
	5.13.3 remote_scheduler
	5.13.4 remove

	5.14 Process_classes
	5.14.1 add_process_class
	5.14.2 create_process_class
	5.14.3 process_class
	5.14.4 process_class_or_null

	5.15 Run_time - Managing Time Slots and Starting Times
	5.15.1 schedule
	5.15.2 xml

	5.16 Schedule - Runtime
	5.16.1 xml

	5.17 Spooler
	5.17.1 abort_immediately
	5.17.2 abort_immediately_and_restart
	5.17.3 add_job_chain
	5.17.4 configuration_directory
	5.17.5 create_job_chain
	5.17.6 create_order
	5.17.7 create_variable_set
	5.17.8 create_xslt_stylesheet
	5.17.9 db_history_table_name
	5.17.10 db_name
	5.17.11 db_order_history_table_name
	5.17.12 db_orders_table_name
	5.17.13 db_tasks_table_name
	5.17.14 db_variables_table_name
	5.17.15 directory
	5.17.16 execute_xml
	5.17.17 hostname
	5.17.18 id
	5.17.19 include_path
	5.17.20 ini_path
	5.17.21 is_service
	5.17.22 job
	5.17.23 job_chain
	5.17.24 job_chain_exists
	5.17.25 let_run_terminate_and_restart
	5.17.26 locks
	5.17.27 log
	5.17.28 log_dir
	5.17.29 param
	5.17.30 process_classes
	5.17.31 schedule
	5.17.32 supervisor_client
	5.17.33 tcp_port
	5.17.34 terminate
	5.17.35 terminate_and_restart
	5.17.36 udp_port
	5.17.37 var
	5.17.38 variables

	5.18 Spooler_program -
 Debugging Jobs in Java

	5.19 Subprocess
	5.19.1 close
	5.19.2 env
	5.19.3 environment
	5.19.4 exit_code
	5.19.5 ignore_error
	5.19.6 ignore_signal
	5.19.7 kill
	5.19.8 own_process_group
	5.19.9 pid
	5.19.10 priority
	5.19.11 priority_class
	5.19.12 start
	5.19.13 terminated
	5.19.14 termination_signal
	5.19.15 timeout
	5.19.16 wait_for_termination

	5.20 Supervisor_client
	5.20.1 hostname
	5.20.2 tcp_port

	5.21 Task
	5.21.1 add_pid
	5.21.2 call_me_again_when_locks_available
	5.21.3 changed_directories
	5.21.4 create_subprocess
	5.21.5 delay_spooler_process
	5.21.6 end
	5.21.7 error
	5.21.8 exit_code
	5.21.9 history_field
	5.21.10 id
	5.21.11 job
	5.21.12 order
	5.21.13 params
	5.21.14 priority
	5.21.15 priority_class
	5.21.16 remove_pid
	5.21.17 repeat
	5.21.18 stderr_path
	5.21.19 stderr_text
	5.21.20 stdout_path
	5.21.21 stdout_text
	5.21.22 trigger_files
	5.21.23 try_hold_lock
	5.21.24 try_hold_lock_non_exclusive
	5.21.25 web_service
	5.21.26 web_service_or_null

	5.22 Variable_set -
 A Variable_set may be used to pass parameters

	5.22.1 count
	5.22.2 merge
	5.22.3 names
	5.22.4 set_var
	5.22.5 substitute
	5.22.6 value
	5.22.7 var
	5.22.8 xml

	5.23 Web_service
	5.23.1 forward_xslt_stylesheet_path
	5.23.2 name
	5.23.3 params

	5.24 Web_service_operation
	5.24.1 peer_hostname
	5.24.2 peer_ip
	5.24.3 request
	5.24.4 response
	5.24.5 web_service

	5.25 Web_service_request
	5.25.1 binary_content
	5.25.2 charset_name
	5.25.3 content_type
	5.25.4 header
	5.25.5 string_content
	5.25.6 url

	5.26 Web_service_response
	5.26.1 charset_name
	5.26.2 content_type
	5.26.3 header
	5.26.4 send
	5.26.5 status_code
	5.26.6 string_content

	5.27 Xslt_stylesheet
	5.27.1 apply_xml
	5.27.2 close
	5.27.3 load_file
	5.27.4 load_xml

	Index

